找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Analysis of Compressible Fluid Flows; Eduard Feireisl,Mária Lukáčová-Medviďová,Bangwei S Book 2021 The Editor(s) (if applicable)

[复制链接]
查看: 19319|回复: 53
发表于 2025-3-21 19:42:40 | 显示全部楼层 |阅读模式
书目名称Numerical Analysis of Compressible Fluid Flows
编辑Eduard Feireisl,Mária Lukáčová-Medviďová,Bangwei S
视频videohttp://file.papertrans.cn/669/668941/668941.mp4
概述This is the first monograph on the numerical analysis of oscillatory solutions to problems in fluid mechanics. It contains completely new ideas never published before.An effective way of computation o
丛书名称MS&A
图书封面Titlebook: Numerical Analysis of Compressible Fluid Flows;  Eduard Feireisl,Mária Lukáčová-Medviďová,Bangwei S Book 2021 The Editor(s) (if applicable)
描述.This book is devoted to the numerical analysis of compressible fluids in the spirit of the celebrated Lax equivalence theorem. The text is aimed at graduate students in mathematics and fluid dynamics, researchers in applied mathematics, numerical analysis and scientific computing, and engineers and physicists..The book contains original theoretical material based on a new approach to generalized solutions (dissipative or measure-valued solutions). The concept of a weak-strong uniqueness principle in the class of generalized solutions is used to prove the convergence of various numerical methods. The problem of oscillatory solutions is solved by an original adaptation of the method of K-convergence. An effective method of computing the Young measures is presented. Theoretical results are illustrated by a series of numerical experiments..Applications of these concepts are to be expected in other problems of fluid mechanics and related fields..
出版日期Book 2021
关键词compressible fluid flow; numerical analysis; measure-valued solutions; K-convergence; fluid mechanics
版次1
doihttps://doi.org/10.1007/978-3-030-73788-7
isbn_softcover978-3-030-73790-0
isbn_ebook978-3-030-73788-7Series ISSN 2037-5255 Series E-ISSN 2037-5263
issn_series 2037-5255
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Numerical Analysis of Compressible Fluid Flows影响因子(影响力)




书目名称Numerical Analysis of Compressible Fluid Flows影响因子(影响力)学科排名




书目名称Numerical Analysis of Compressible Fluid Flows网络公开度




书目名称Numerical Analysis of Compressible Fluid Flows网络公开度学科排名




书目名称Numerical Analysis of Compressible Fluid Flows被引频次




书目名称Numerical Analysis of Compressible Fluid Flows被引频次学科排名




书目名称Numerical Analysis of Compressible Fluid Flows年度引用




书目名称Numerical Analysis of Compressible Fluid Flows年度引用学科排名




书目名称Numerical Analysis of Compressible Fluid Flows读者反馈




书目名称Numerical Analysis of Compressible Fluid Flows读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:52:13 | 显示全部楼层
Inviscid Fluids: Euler SystemThe Euler system describing the motion of inviscid perfect fluid is presented. We discuss its local-in-time well-posedness in the framework of smooth solutions, development of singularities, and global ill-posedness for smooth initial data in the class of admissible weak solutions.
发表于 2025-3-22 02:03:22 | 显示全部楼层
发表于 2025-3-22 07:55:47 | 显示全部楼层
发表于 2025-3-22 12:01:52 | 显示全部楼层
发表于 2025-3-22 14:55:11 | 显示全部楼层
Numerical MethodsWe introduce a finite volume method for the approximation of equations governing the motion of both inviscid and viscous compressible fluids. In particular, we define stable and consistent numerical approximation of the Euler and the Navier–Stokes equations.
发表于 2025-3-22 19:35:20 | 显示全部楼层
发表于 2025-3-22 22:51:01 | 显示全部楼层
Finite Volume Method for the Barotropic Euler System – RevisitedInspired by the Brenner-type regularization we propose a finite volume method for the barotropic Euler system and show that it is unconditionally convergent. In particular, the density remains strictly positive at any level of approximation without imposing any extra condition of CFL type.
发表于 2025-3-23 01:52:17 | 显示全部楼层
发表于 2025-3-23 08:25:57 | 显示全部楼层
Numerical Analysis of Compressible Fluid Flows978-3-030-73788-7Series ISSN 2037-5255 Series E-ISSN 2037-5263
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 13:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表