找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Analysis and Its Applications; Second International Lubin Vulkov,Plamen Yalamov,Jerzy Waśniewski Conference proceedings 2001 Spri

[复制链接]
查看: 26653|回复: 63
发表于 2025-3-21 18:32:48 | 显示全部楼层 |阅读模式
书目名称Numerical Analysis and Its Applications
副标题Second International
编辑Lubin Vulkov,Plamen Yalamov,Jerzy Waśniewski
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Numerical Analysis and Its Applications; Second International Lubin Vulkov,Plamen Yalamov,Jerzy Waśniewski Conference proceedings 2001 Spri
出版日期Conference proceedings 2001
关键词analysis; computational mathematics; computational science; grid computing; numerical algorithms; numeric
版次1
doihttps://doi.org/10.1007/3-540-45262-1
isbn_softcover978-3-540-41814-6
isbn_ebook978-3-540-45262-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

书目名称Numerical Analysis and Its Applications影响因子(影响力)




书目名称Numerical Analysis and Its Applications影响因子(影响力)学科排名




书目名称Numerical Analysis and Its Applications网络公开度




书目名称Numerical Analysis and Its Applications网络公开度学科排名




书目名称Numerical Analysis and Its Applications被引频次




书目名称Numerical Analysis and Its Applications被引频次学科排名




书目名称Numerical Analysis and Its Applications年度引用




书目名称Numerical Analysis and Its Applications年度引用学科排名




书目名称Numerical Analysis and Its Applications读者反馈




书目名称Numerical Analysis and Its Applications读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:00:52 | 显示全部楼层
Fractional Step Runge-Kutta Methods for the Resolution of Two Dimensional Time Dependent Coefficientl provide totally discrete algorithms with low computational cost and high order of accuracy in time. We will show the efficiency of such methods, in combination with upwind difference schemes on special meshes, to integrate numerically singularly perturbed evolutionary convection-diffuusion problems.
发表于 2025-3-22 00:28:04 | 显示全部楼层
Variable Stepsizes in Symmetric Linear Multistep Methodsetric linear multistep methods especially designed for second order differential equations can integrate very efficiently periodic or quasiperiodic orbits till long times. A study will be given on what happens when variable stepsizes are considered so as to deal with highly eccentric orbits.
发表于 2025-3-22 07:05:45 | 显示全部楼层
Inexact Newton Methods and Mixed Nonlinear Complementary Problemsethod applied to a particular system of nonlinear equations.We have applied this inexact interior point algorithm for the solution of some nonlinear complementary problems. We provide numerical results in both sequential and parallel implementations.
发表于 2025-3-22 11:45:34 | 显示全部楼层
Sensitivity Analysis of the Expected Accumulated Reward Using Uniformization and IRK3 Methodshe third order implicit Runge-Kutta method. After providing a new way of writing the system of equations to be solved, we applythi s method with a stepsize choice different from the classical one in order to accelerate the algorithm execution. Finally, we compare the time complexity of both of the methods on a numerical example.
发表于 2025-3-22 15:25:51 | 显示全部楼层
Skew-Circulant Preconditioners for Systems of LMF-Based ODE Codestioned or singular even when the given system is well-conditioned. In this paper, we propose a nonsingular skew-circulant preconditioner for systems of LMF-based ODE codes. Numerical results are given to illustrate the effectiveness of our method.
发表于 2025-3-22 18:26:01 | 显示全部楼层
发表于 2025-3-22 21:12:02 | 显示全部楼层
发表于 2025-3-23 02:00:50 | 显示全部楼层
Preliminary Remarks on Multigrid Methods for Circulant Matricesf Preconditioned Conjugate Gradient (PCG) iterations to reach the solution within a given accuracy of ɛ. The full analysis of convergence and the related numerical experiments are reported in a forthcoming paper [.].
发表于 2025-3-23 05:37:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 17:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表