找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numbers, Information and Complexity; Ingo Althöfer,Ning Cai,Zhen Zhang Book 2000 Springer Science+Business Media New York 2000 Symbol.code

[复制链接]
楼主: children
发表于 2025-3-28 16:09:09 | 显示全部楼层
Rudolf Ahlswede,Levon H. Khachatrian,András Sárközy
发表于 2025-3-28 21:17:52 | 显示全部楼层
http://image.papertrans.cn/n/image/668905.jpg
发表于 2025-3-29 01:28:54 | 显示全部楼层
发表于 2025-3-29 03:28:53 | 显示全部楼层
Some New Results on Macaulay Posetse in many branches of combinatorics and have numerous applications. We survey mostly new and also some old results on Macaulay posets. Emphasis is also put on construction of extremal ideals in Macaulay posets.
发表于 2025-3-29 07:14:17 | 显示全部楼层
发表于 2025-3-29 13:19:45 | 显示全部楼层
The Cycle Method and Its Limitssections of the members of the family is assumed. If these intersections have to be at least 2, the method fails: the celebrated Complete Intersection Theorem by Ahlswede and Khachatrian cannot be proved by this method. We show the reasons and some attempts to overcome the difficulties.
发表于 2025-3-29 16:47:59 | 显示全部楼层
发表于 2025-3-29 21:08:17 | 显示全部楼层
978-1-4419-4967-7Springer Science+Business Media New York 2000
发表于 2025-3-30 00:03:14 | 显示全部楼层
Almost Arithmetic ProgressionsWe investigate almost arithmetic progressions .., .., ..., .. of real numbers, that means sequences for which there exist non-overlapping intervals .. = [.., ..] of equal length, where the .. constitute an arithmetic progression, and which satisfy .. ∈ .. for . = 1, ..., ..
发表于 2025-3-30 04:04:49 | 显示全部楼层
Convex Bounds for the 0,1 Co-Ordinate Deletions FunctionLet .(.) be the set of 0,1 co-ordinate vectors of dimension .. For . ⊆ .(.) let Δ. be the set of vectors in .(. − 1) obtained by deleting a co-ordinate from a vector of . in all ways. The 0,1 co-ordinate deletions function .(., .) is min |Δ.| over all . ⊑ .(.)with |.| = .
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 12:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表