找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Number Theory in Function Fields; Michael Rosen Textbook 2002 Springer Science+Business Media New York 2002 Algebraic Function Fields.Alge

[复制链接]
查看: 39185|回复: 57
发表于 2025-3-21 18:09:31 | 显示全部楼层 |阅读模式
书目名称Number Theory in Function Fields
编辑Michael Rosen
视频video
概述Includes supplementary material:
丛书名称Graduate Texts in Mathematics
图书封面Titlebook: Number Theory in Function Fields;  Michael Rosen Textbook 2002 Springer Science+Business Media New York 2002 Algebraic Function Fields.Alge
描述Elementary number theory is concerned with the arithmetic properties of the ring of integers, Z, and its field of fractions, the rational numbers, Q. Early on in the development of the subject it was noticed that Z has many properties in common with A = IF[T], the ring of polynomials over a finite field. Both rings are principal ideal domains, both have the property that the residue class ring of any non-zero ideal is finite, both rings have infinitely many prime elements, and both rings have finitely many units. Thus, one is led to suspect that many results which hold for Z have analogues of the ring A. This is indeed the case. The first four chapters of this book are devoted to illustrating this by presenting, for example, analogues of the little theorems of Fermat and Euler, Wilson‘s theorem, quadratic (and higher) reciprocity, the prime number theorem, and Dirichlet‘s theorem on primes in an arithmetic progression. All these results have been known for a long time, but it is hard to locate any exposition of them outside of the original papers. Algebraic number theory arises from elementary number theory by con­ sidering finite algebraic extensions K of Q, which are called algeb
出版日期Textbook 2002
关键词Algebraic Function Fields; Algebraic Geometry; Function Fields; Number theory; Prime; Prime number; finite
版次1
doihttps://doi.org/10.1007/978-1-4757-6046-0
isbn_softcover978-1-4419-2954-9
isbn_ebook978-1-4757-6046-0Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

书目名称Number Theory in Function Fields影响因子(影响力)




书目名称Number Theory in Function Fields影响因子(影响力)学科排名




书目名称Number Theory in Function Fields网络公开度




书目名称Number Theory in Function Fields网络公开度学科排名




书目名称Number Theory in Function Fields被引频次




书目名称Number Theory in Function Fields被引频次学科排名




书目名称Number Theory in Function Fields年度引用




书目名称Number Theory in Function Fields年度引用学科排名




书目名称Number Theory in Function Fields读者反馈




书目名称Number Theory in Function Fields读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:00:38 | 显示全部楼层
发表于 2025-3-22 01:35:09 | 显示全部楼层
发表于 2025-3-22 06:40:19 | 显示全部楼层
,Galois Extensions — Hecke and Artin L-Series,In Chapters 7 and 8 we discussed finite extensions . of algebraic function fields. We propose to continue that discussion here under the special assumption that the extension . is Galois. To simplify the discussion we continue to assume that the constant field . of . is perfect.
发表于 2025-3-22 12:38:21 | 显示全部楼层
发表于 2025-3-22 14:39:10 | 显示全部楼层
发表于 2025-3-22 19:03:42 | 显示全部楼层
Graduate Texts in Mathematicshttp://image.papertrans.cn/n/image/668882.jpg
发表于 2025-3-22 22:07:33 | 显示全部楼层
发表于 2025-3-23 04:09:40 | 显示全部楼层
发表于 2025-3-23 09:10:31 | 显示全部楼层
Extensions of Function Fields, Riemann-Hurwitz, and the ABC Theorem,be presented in a geometric fashion. Function fields correspond to algebraic curves and finite extensions of function fields correspond to ramified covers of curves. In this chapter, however, we will continue to use a more arithmetic point of view which emphasizes the analogy of function fields with algebraic number fields.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 14:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表