找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Number Theory and Discrete Mathematics; A. K. Agarwal,Bruce C. Berndt,Michel Waldschmidt Book 2002 Hindustan Book Agency (India) 2002

[复制链接]
查看: 25174|回复: 65
发表于 2025-3-21 16:06:00 | 显示全部楼层 |阅读模式
书目名称Number Theory and Discrete Mathematics
编辑A. K. Agarwal,Bruce C. Berndt,Michel Waldschmidt
视频video
图书封面Titlebook: Number Theory and Discrete Mathematics;  A. K. Agarwal,Bruce C. Berndt,Michel Waldschmidt Book 2002 Hindustan Book Agency (India) 2002
出版日期Book 2002
版次1
doihttps://doi.org/10.1007/978-93-86279-10-1
isbn_ebook978-93-86279-10-1
copyrightHindustan Book Agency (India) 2002
The information of publication is updating

书目名称Number Theory and Discrete Mathematics影响因子(影响力)




书目名称Number Theory and Discrete Mathematics影响因子(影响力)学科排名




书目名称Number Theory and Discrete Mathematics网络公开度




书目名称Number Theory and Discrete Mathematics网络公开度学科排名




书目名称Number Theory and Discrete Mathematics被引频次




书目名称Number Theory and Discrete Mathematics被引频次学科排名




书目名称Number Theory and Discrete Mathematics年度引用




书目名称Number Theory and Discrete Mathematics年度引用学科排名




书目名称Number Theory and Discrete Mathematics读者反馈




书目名称Number Theory and Discrete Mathematics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:34:34 | 显示全部楼层
Overview: 978-93-86279-10-1
发表于 2025-3-22 01:42:30 | 显示全部楼层
发表于 2025-3-22 08:21:23 | 显示全部楼层
A (Conjectural) 1/3-phenomenon for the Number of Rhombus Tilings of a Hexagon which Contain a Fixedth side lengths 2. + ., 2. + ., 2. + ., 2. + ., 2. + ., 2. + . contains the (horizontal) rhombus with coordinates (2. + ., 2. + .) is equal to ., where .(.) is a rational function in .. Several specific instances of this “1/3-phenomenon” are made explicit.
发表于 2025-3-22 11:50:03 | 显示全部楼层
,Observations on Some Algebraic Equations Associated with Ramanujan’s Work,., which he solved by radicals, and the Diophantine equation . + . + . = 1, which appears in ., along with an astonishing solution. It is shown that, in general, the equation with 5 iterated square roots cannot be solved by radicals and that the Diophantine equation has solutions not previously quoted.
发表于 2025-3-22 14:35:30 | 显示全部楼层
A Note on Cordial Labelings of Multiple Shells,he number of vertices . with .(.) = 0 and .(.) = 1 respectively. Let .(0), .(1) be similarly defined. A graph is said to be . if there exists a vertex labeling . such that |.(0) − .(1)| ≤ 1 and |.(0) − .(1)| ≤ 1. In this paper, we show that every multiple shell . is cordial for all positive integers ., …, ., ., …, ..
发表于 2025-3-22 20:15:09 | 显示全部楼层
发表于 2025-3-22 23:47:02 | 显示全部楼层
,Little Flowers to G.H. Hardy (07-02-1877–01-12-1947),Honouring Ramanujan is not complete without honouring G.H. Hardy who collaborated with him in an epoch-making way and brought his contributions to the lime light of the world. In this small article I list a few results of mine and offer it to G.H. Hardy as little flowers.
发表于 2025-3-23 04:42:38 | 显示全部楼层
发表于 2025-3-23 05:36:17 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 11:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表