找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Number Theory I; Fundamental Problems A. N. Parshin,I. R. Shafarevich Book 19951st edition Springer-Verlag Berlin Heidelberg 1995 Arakelov

[复制链接]
查看: 23024|回复: 36
发表于 2025-3-21 19:31:48 | 显示全部楼层 |阅读模式
书目名称Number Theory I
副标题Fundamental Problems
编辑A. N. Parshin,I. R. Shafarevich
视频video
概述Covers the most recent results around Fermat‘s Theorem (Andrew Wiles) and the Langlands Conjecture (Lafforgue)
丛书名称Encyclopaedia of Mathematical Sciences
图书封面Titlebook: Number Theory I; Fundamental Problems A. N. Parshin,I. R. Shafarevich Book 19951st edition Springer-Verlag Berlin Heidelberg 1995 Arakelov
描述Preface Among the various branches of mathematics, number theory is characterized to a lesser degree by its primary subject ("integers") than by a psychologi­ cal attitude. Actually, number theory also deals with rational, algebraic, and transcendental numbers, with some very specific analytic functions (such as Dirichlet series and modular forms), and with some geometric objects (such as lattices and schemes over Z). The question whether a given article belongs to number theory is answered by its author‘s system of values. If arithmetic is not there, the paper will hardly be considered as number-theoretical, even if it deals exclusively with integers and congruences. On the other hand, any mathematical tool, say, homotopy theory or dynamical systems may become an important source of number-theoretical inspiration. For this reason, com­ binatorics and the theory of recursive functions are not usually associated with number theory, whereas modular functions are. In this report we interpret number theory broadly. There are compelling reasons to adopt this viewpoint. First of all, the integers constitute (together with geometric images) one of the primary subjects of mathematics in ge
出版日期Book 19951st edition
关键词Arakelov geometry; Arithmetic der algebraischen Zahlen; Elementare Zahlentheorie; Elementary number the
版次1
doihttps://doi.org/10.1007/978-3-662-08005-4
isbn_ebook978-3-662-08005-4Series ISSN 0938-0396
issn_series 0938-0396
copyrightSpringer-Verlag Berlin Heidelberg 1995
The information of publication is updating

书目名称Number Theory I影响因子(影响力)




书目名称Number Theory I影响因子(影响力)学科排名




书目名称Number Theory I网络公开度




书目名称Number Theory I网络公开度学科排名




书目名称Number Theory I被引频次




书目名称Number Theory I被引频次学科排名




书目名称Number Theory I年度引用




书目名称Number Theory I年度引用学科排名




书目名称Number Theory I读者反馈




书目名称Number Theory I读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:41:14 | 显示全部楼层
发表于 2025-3-22 01:41:52 | 显示全部楼层
发表于 2025-3-22 04:58:52 | 显示全部楼层
https://doi.org/10.1007/978-3-662-08005-4Arakelov geometry; Arithmetic der algebraischen Zahlen; Elementare Zahlentheorie; Elementary number the
发表于 2025-3-22 12:00:53 | 显示全部楼层
Elementary Number TheoryThe usual decimal notation of natural numbers is a special case of .. An integer . is written to the base . if it is represented in the form.where 0 ≤ .. ≤ . 1. The coefficients .. are called . (or simply digits). Actually, this name is often applied not to the numbers .. but to the special signs chosen to denote these numbers.
发表于 2025-3-22 13:29:20 | 显示全部楼层
发表于 2025-3-22 19:14:24 | 显示全部楼层
发表于 2025-3-23 00:47:05 | 显示全部楼层
发表于 2025-3-23 03:54:57 | 显示全部楼层
发表于 2025-3-23 06:21:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 03:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表