书目名称 | Number Theory | 副标题 | Structures, Examples | 编辑 | Dorin Andrica,Titu Andreescu | 视频video | http://file.papertrans.cn/669/668847/668847.mp4 | 概述 | Approaches number theory from a problem-solving standpoint, presenting each concept in the framework of an example or problem.The text progresses incrementally from simpler to more complex principles. | 图书封面 |  | 描述 | .Number theory, an ongoing rich area of mathematical exploration, is noted for its theoretical depth, with connections and applications to other fields from representation theory, to physics, cryptography, and more. While the forefront of number theory is replete with sophisticated and famous open problems, at its foundation are basic, elementary ideas that can stimulate and challenge beginning students. This lively introductory text focuses on a problem-solving approach to the subject...Key features of Number Theory: Structures, Examples, and Problems:..* A rigorous exposition starts with the natural numbers and the basics...* Important concepts are presented with an example, which may also emphasize an application. The exposition moves systematically and intuitively to uncover deeper properties...* Topics include divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, quadratic residues, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems are covered...* Unique exer | 出版日期 | Textbook 2009 | 关键词 | Arithmetic; Mersenne prime; Pigeonhole principle; Prime; Problem-solving; binomial; cryptography; equation; | 版次 | 1 | doi | https://doi.org/10.1007/b11856 | isbn_ebook | 978-0-8176-4645-5 | copyright | Birkhäuser Boston 2009 |
The information of publication is updating
|
|