找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Normal Approximation by Stein’s Method; Louis H.Y. Chen,Larry Goldstein,Qi-Man Shao Textbook 2011 Springer-Verlag GmbH Berlin Heidelberg 2

[复制链接]
楼主: TRACT
发表于 2025-3-25 06:55:01 | 显示全部楼层
发表于 2025-3-25 11:06:21 | 显示全部楼层
Introduction,e introduced here, in particular, the Stein identity and the Stein equation. To convey the flavor of the method, the ‘leave one out’ coupling used in Stein’s original paper is reviewed, and compared to the more classical approach of Lindberg. A detailed outline, summary, and chapter dependency diagr
发表于 2025-3-25 11:49:27 | 显示全部楼层
发表于 2025-3-25 15:50:17 | 显示全部楼层
发表于 2025-3-25 22:56:10 | 显示全部楼层
,, Bounds,s are presented for illustration. First considering independent random variables, an .. Berry–Esseen bound is shown, followed by a demonstration of a type of contraction principle ‘toward the normal.’ Bounds in .. are then proved for hierarchical structures, that is, self similar, fractal type objec
发表于 2025-3-26 00:49:13 | 显示全部楼层
,, by Bounded Couplings,ed between an auxiliary random variable . and the variable .. Important cases considered include when the variable . has the same distribution as ., or has the zero bias or size bias distribution of .. The bounds shown in this chapter are often interpretable, sometimes directly, as a distance betwee
发表于 2025-3-26 07:41:45 | 显示全部楼层
发表于 2025-3-26 11:43:50 | 显示全部楼层
发表于 2025-3-26 14:00:32 | 显示全部楼层
,Non-uniform Bounds for Independent Random Variables,use of non-uniform concentration inequalities and the Bennett–Hoeffding inequality, bounds for the absolute difference between the distribution function .(.) of a sum of independent variables and the normal Φ(.), which may depend on .∈ℝ, are provided. Non-uniform bounds serve as a counterpoint to th
发表于 2025-3-26 18:02:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 12:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表