找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nonstandard Analysis in Practice; Francine Diener,Marc Diener Textbook 1995 Springer-Verlag Berlin Heidelberg 1995 Martingale.Riemannian g

[复制链接]
查看: 53556|回复: 51
发表于 2025-3-21 19:37:42 | 显示全部楼层 |阅读模式
书目名称Nonstandard Analysis in Practice
编辑Francine Diener,Marc Diener
视频video
丛书名称Universitext
图书封面Titlebook: Nonstandard Analysis in Practice;  Francine Diener,Marc Diener Textbook 1995 Springer-Verlag Berlin Heidelberg 1995 Martingale.Riemannian g
描述The purpose of this book is to provide an effective introduction to nonstandard methods. A short tutorial giving the necessary background, is followed by applications to various domains, independent from each other. These include complex dynamical systems, stochastic differential equations, smooth and algebraic curves, measure theory, the external calculus, with some applications to probability. The authors have been using Nonstandard Analysis for many years in their research. They all belong to the growing nonstandard school founded by G. Reeb, which is attracting international and interdisciplinary interest.
出版日期Textbook 1995
关键词Martingale; Riemannian geometry; curvature; differential geometry; duck; infinitesimals; neutrice; nonstand
版次1
doihttps://doi.org/10.1007/978-3-642-57758-1
isbn_softcover978-3-540-60297-2
isbn_ebook978-3-642-57758-1Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 1995
The information of publication is updating

书目名称Nonstandard Analysis in Practice影响因子(影响力)




书目名称Nonstandard Analysis in Practice影响因子(影响力)学科排名




书目名称Nonstandard Analysis in Practice网络公开度




书目名称Nonstandard Analysis in Practice网络公开度学科排名




书目名称Nonstandard Analysis in Practice被引频次




书目名称Nonstandard Analysis in Practice被引频次学科排名




书目名称Nonstandard Analysis in Practice年度引用




书目名称Nonstandard Analysis in Practice年度引用学科排名




书目名称Nonstandard Analysis in Practice读者反馈




书目名称Nonstandard Analysis in Practice读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:56:01 | 显示全部楼层
Tutorial,g the 19th century is a consequence of an idea of E. Nelson [91]: to resort to an adjective, the predicate ., which is deliberately left undefined. This idea makes it possible to dissociate completely the logical foundation of the nonstandard method from its practical use.
发表于 2025-3-22 01:27:30 | 显示全部楼层
Neutrices, external numbers, and external calculus,e, have developed formalisms which start by defining the notion of order of magnitude of a function and then give rules which allow some elementary calculations using this notion. The notation of Landau is perhaps a good example. (See [93].) We also mention the “Infinitärcalcül” of Du Bois-Reymond. (See [68].)
发表于 2025-3-22 05:29:29 | 显示全部楼层
The Vibrating String,y notion of functional spaces. This example is very simple, but it is interesting because it can be generalised. The generally used theory represents the string position at the point ., at the time ., by a continuous function .(.), with . and . real. This function is a solution of the equations (PDE):
发表于 2025-3-22 09:29:09 | 显示全部楼层
发表于 2025-3-22 13:43:51 | 显示全部楼层
发表于 2025-3-22 19:13:00 | 显示全部楼层
发表于 2025-3-22 22:39:19 | 显示全部楼层
发表于 2025-3-23 03:31:50 | 显示全部楼层
Complex analysis,ifficulty, as though you had to fly a Concorde ! Briefly, complex analysis gives complexes. Otherwise excellent courses on complex analysis do not clearly answer the first question one might be tempted to ask: what does an analytic function look like. And, finally, too much information prevents a good understanding of complex analysis.
发表于 2025-3-23 05:55:07 | 显示全部楼层
Integration over finite sets,aces. It is known that any situation can be reduced to this one. For example [32], in order to integrate a function over an interval . of ℝ, we consider a finite approximation of . i.e. a finite partition . = (.)o≤.≤. of ., infinitesimally fine (which we call a near interval) and we define the integral of . as the finite sum.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 17:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表