找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nonlinear Singular Perturbation Phenomena; Theory and Applicati K. W. Chang,F. A. Howes Book 1984 Springer Science+Business Media New York

[复制链接]
楼主: 迅速
发表于 2025-3-23 11:52:55 | 显示全部楼层
发表于 2025-3-23 15:25:52 | 显示全部楼层
Semilinear Singular Perturbation Problems,ural questions to ask regarding this problem are: Does the problem have a solution for all small values of ε? Once the existence of a solution has been established, how does the solution behave as ε + 0.?
发表于 2025-3-23 18:50:20 | 显示全部楼层
Examples and Applications,ounded second derivative, then by Theorem 3.1, for sufficiently small .,the Dirichlet problem has a solution .which satisfies . where . Moreover, the behavior of the solution . in the boundary layers at t = -1 and/or t = 1 (if u(-1)≠A and/or u(1) ≠ B) can be described by means of the layer functions given in the conclusion of Theorem 3.1.
发表于 2025-3-24 00:54:35 | 显示全部楼层
Introduction,We are mainly interested in quasilinear and nonlinear boundary value problems, to which some well-known methods, such as the methods of matched asymptotic expansions and two-variable expansions are not immediately applicable. For example, let us consider the following boundary value problem(cf. O’Malley [75], Chapter 5)
发表于 2025-3-24 03:55:03 | 显示全部楼层
Quasilinear Singular Perturbation Problems,We consider now the singularly perturbed quasilinear Dirichlet problem
发表于 2025-3-24 08:12:29 | 显示全部楼层
发表于 2025-3-24 12:30:00 | 显示全部楼层
978-0-387-96066-1Springer Science+Business Media New York 1984
发表于 2025-3-24 18:26:04 | 显示全部楼层
Nonlinear Singular Perturbation Phenomena978-1-4612-1114-3Series ISSN 0066-5452 Series E-ISSN 2196-968X
发表于 2025-3-24 20:02:47 | 显示全部楼层
Applied Mathematical Scienceshttp://image.papertrans.cn/n/image/667683.jpg
发表于 2025-3-25 02:45:30 | 显示全部楼层
https://doi.org/10.1007/978-1-4612-1114-3Area; Boundary value problem; DEX; Invariant; behavior; boundary element method; eXist; equation; form; maxim
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 16:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表