找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nonlinear Semigroups, Partial Differential Equations and Attractors; Proceedings of a Sym Tepper L. Gill,Woodford William Zachary Conferenc

[复制链接]
查看: 29615|回复: 56
发表于 2025-3-21 18:05:04 | 显示全部楼层 |阅读模式
书目名称Nonlinear Semigroups, Partial Differential Equations and Attractors
副标题Proceedings of a Sym
编辑Tepper L. Gill,Woodford William Zachary
视频video
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Nonlinear Semigroups, Partial Differential Equations and Attractors; Proceedings of a Sym Tepper L. Gill,Woodford William Zachary Conferenc
出版日期Conference proceedings 1989
关键词differential equation; integrable system; partial differential equation; schrödinger equation; semigroup
版次1
doihttps://doi.org/10.1007/BFb0086746
isbn_softcover978-3-540-51594-4
isbn_ebook978-3-540-46679-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1989
The information of publication is updating

书目名称Nonlinear Semigroups, Partial Differential Equations and Attractors影响因子(影响力)




书目名称Nonlinear Semigroups, Partial Differential Equations and Attractors影响因子(影响力)学科排名




书目名称Nonlinear Semigroups, Partial Differential Equations and Attractors网络公开度




书目名称Nonlinear Semigroups, Partial Differential Equations and Attractors网络公开度学科排名




书目名称Nonlinear Semigroups, Partial Differential Equations and Attractors被引频次




书目名称Nonlinear Semigroups, Partial Differential Equations and Attractors被引频次学科排名




书目名称Nonlinear Semigroups, Partial Differential Equations and Attractors年度引用




书目名称Nonlinear Semigroups, Partial Differential Equations and Attractors年度引用学科排名




书目名称Nonlinear Semigroups, Partial Differential Equations and Attractors读者反馈




书目名称Nonlinear Semigroups, Partial Differential Equations and Attractors读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:13:57 | 显示全部楼层
发表于 2025-3-22 02:51:35 | 显示全部楼层
发表于 2025-3-22 08:19:00 | 显示全部楼层
Global existence for semilinear parabolic systems via Lyapunov type methods, if the vector field f satisfies a generalized Lyapunov type condition then either at least two components of the solution of (1) becomes unbounded in finite time or the solution exists for all t>0. Our result generalizes a recent result of Hollis, Martin, and Pierre [4], and the proof given is considerably simpler.
发表于 2025-3-22 11:49:47 | 显示全部楼层
A survey of local existence theories for abstract nonlinear initial value problems,d also the importance of assuming or not assuming that . is continuous in .. Other topics include Carathéodory conditions, uniqueness, semigroups, semicontinuity, subtangential conditions, limit solutions, continuous dependence of . on ., and bijections between . and ..
发表于 2025-3-22 14:31:38 | 显示全部楼层
The transient semiconductor problem with generation terms, II,., .), coupled with the map . ⇔ . defined by the Poisson equation at each .. The analysis leads to existence of solutions for all time as well as uniqueness (and continuous dependence on data) under stronger conditions.
发表于 2025-3-22 17:13:58 | 显示全部楼层
发表于 2025-3-22 23:20:27 | 显示全部楼层
Nonlinear Semigroups, Partial Differential Equations and Attractors978-3-540-46679-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-23 02:15:47 | 显示全部楼层
发表于 2025-3-23 07:28:29 | 显示全部楼层
Spectrum estimations for the generalized quantum Henon-Heiles system,We propose an explicit unitary discretization of the Heisenberg equations associated to a general quantum system with two degrees of freedom. In the framework of this approximation we extract information related to the energy spectrum of the generalized quantum Henon-Heiles system.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 11:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表