书目名称 | Nonlinear Oscillations of Hamiltonian PDEs |
编辑 | Massimiliano Berti |
视频video | |
概述 | Introductory treatise to the current research in the field.Includes an appendix that discusses the basic noties of Hamiltonian PDEs and number theory |
丛书名称 | Progress in Nonlinear Differential Equations and Their Applications |
图书封面 |  |
描述 | .Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equations...After introducing the reader to classical finite-dimensional dynamical system theory, including the Weinstein–Moser and Fadell–Rabinowitz bifurcation results, the author develops the analogous theory for nonlinear wave equations. The theory and applications of the Nash–Moser theorem to a class of nonlinear wave equations is also discussed together with other basic notions of Hamiltonian PDEs and number theory. The main examples of Hamiltonian PDEs presented include: the nonlinear wave equation, the nonlinear Schrödinger equation, beam equations, and the Euler equations of hydrodynamics...This text serves as an introduction to research in this fascinating and rapidly growing field. Graduate students and researchers interested in variational techniques and nonlinear analysis applied to Hamiltonian PDEs will find inspiration in the book.. |
出版日期 | Book 2007 |
关键词 | Dynamical system; Nash-Moser theorem; bifurcations; critical point theory; number theory; partial differe |
版次 | 1 |
doi | https://doi.org/10.1007/978-0-8176-4681-3 |
isbn_ebook | 978-0-8176-4681-3Series ISSN 1421-1750 Series E-ISSN 2374-0280 |
issn_series | 1421-1750 |
copyright | Birkhäuser Boston 2007 |