找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nonlinear Least Squares for Inverse Problems; Theoretical Foundati Guy Chavent Book 2010 Springer Science+Business Media B.V. 2010 analysis

[复制链接]
查看: 35129|回复: 35
发表于 2025-3-21 18:19:02 | 显示全部楼层 |阅读模式
书目名称Nonlinear Least Squares for Inverse Problems
副标题Theoretical Foundati
编辑Guy Chavent
视频video
概述Step-by-step guide to solving Nonlinear Inverse Problems with Least Square methods.Contains a geometric theory to analyze Wellposedness and Optimizability.Detailed analysis of practical issues when so
丛书名称Scientific Computation
图书封面Titlebook: Nonlinear Least Squares for Inverse Problems; Theoretical Foundati Guy Chavent Book 2010 Springer Science+Business Media B.V. 2010 analysis
描述The domain of inverse problems has experienced a rapid expansion, driven by the increase in computing power and the progress in numerical modeling. When I started working on this domain years ago, I became somehow fr- tratedtoseethatmyfriendsworkingonmodelingwhereproducingexistence, uniqueness, and stability results for the solution of their equations, but that I was most of the time limited, because of the nonlinearity of the problem, to provethatmyleastsquaresobjectivefunctionwasdi?erentiable....Butwith my experience growing, I became convinced that, after the inverse problem has been properly trimmed, the ?nal least squares problem, the one solved on the computer, should be Quadratically (Q)-wellposed,thatis,both we- posed and optimizable: optimizability ensures that a global minimizer of the least squares function can actually be found using e?cient local optimization algorithms, and wellposedness that this minimizer is stable with respect to perturbation of the data. But the vast majority of inverse problems are nonlinear, and the clas- cal mathematical tools available for their analysis fail to bring answers to these crucial questions: for example, compactness will ensure exi
出版日期Book 2010
关键词analysis of NLS problems; analysis of nonlinear least square problems; choice of parametrization; inver
版次1
doihttps://doi.org/10.1007/978-90-481-2785-6
isbn_softcover978-94-007-3060-1
isbn_ebook978-90-481-2785-6Series ISSN 1434-8322 Series E-ISSN 2198-2589
issn_series 1434-8322
copyrightSpringer Science+Business Media B.V. 2010
The information of publication is updating

书目名称Nonlinear Least Squares for Inverse Problems影响因子(影响力)




书目名称Nonlinear Least Squares for Inverse Problems影响因子(影响力)学科排名




书目名称Nonlinear Least Squares for Inverse Problems网络公开度




书目名称Nonlinear Least Squares for Inverse Problems网络公开度学科排名




书目名称Nonlinear Least Squares for Inverse Problems被引频次




书目名称Nonlinear Least Squares for Inverse Problems被引频次学科排名




书目名称Nonlinear Least Squares for Inverse Problems年度引用




书目名称Nonlinear Least Squares for Inverse Problems年度引用学科排名




书目名称Nonlinear Least Squares for Inverse Problems读者反馈




书目名称Nonlinear Least Squares for Inverse Problems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:47:53 | 显示全部楼层
发表于 2025-3-22 01:38:39 | 显示全部楼层
发表于 2025-3-22 07:33:51 | 显示全部楼层
发表于 2025-3-22 12:07:57 | 显示全部楼层
Regularization of Nonlinear Least Squares Problems
发表于 2025-3-22 16:52:40 | 显示全部楼层
Deflection Conditions for the Strict Quasi-convexity of Sets
发表于 2025-3-22 20:51:49 | 显示全部楼层
发表于 2025-3-23 00:59:02 | 显示全部楼层
发表于 2025-3-23 01:49:59 | 显示全部楼层
978-94-007-3060-1Springer Science+Business Media B.V. 2010
发表于 2025-3-23 07:26:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 06:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表