找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nonlinear Equations: Methods, Models and Applications; Daniela Lupo,Carlo D. Pagani,Bernhard Ruf Conference proceedings 2003 Springer Base

[复制链接]
楼主: culinary
发表于 2025-3-26 23:45:50 | 显示全部楼层
发表于 2025-3-27 01:16:33 | 显示全部楼层
Some Remarks on the Semilinear Wave Equation,We study the following equation. where . and .; . : . → .. We assume that . so that . and W’(ς) is for ς real.
发表于 2025-3-27 06:13:27 | 显示全部楼层
发表于 2025-3-27 12:27:53 | 显示全部楼层
Well-posedness Results for the Modified Zakharov-Kuznetsov Equation,We establish local and global well-posedness for the modified Zakharov-Kuznetsov equation for initial data in H.(][8.). We use smoothing estimates for solutions of the linear problem plus a fixed point theorem to prove the local result.
发表于 2025-3-27 16:52:16 | 显示全部楼层
A Class of Isoinertial One Parameter Families of Selfadjoint Operators,.a (possibly unbounded) selfadjoint operator in a Hilbert space., then the inertia.the pair.,.where.the dimension.the negative subspace.and z is the dimension.the null space.one parameter family.selfadjoint operators is.the inertia.independent of.
发表于 2025-3-27 20:27:44 | 显示全部楼层
发表于 2025-3-28 01:16:16 | 显示全部楼层
,Solutions of Semilinear Problems in Symmetric Planar Domains — ODE Behavior and Uniqueness of BrancWe prove an existence and uniqueness theorem for an “Initial Value Problem” in the plane, related to the semilinear elliptic equation.in the case f is a C.-convex function. This result is applied to show the uniqueness of a global bifurcation branch for the problem. whereΩis a symmetric bounded domain inℝ.
发表于 2025-3-28 05:49:14 | 显示全部楼层
发表于 2025-3-28 10:13:35 | 显示全部楼层
发表于 2025-3-28 10:42:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 00:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表