找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nonlinear Dimensionality Reduction Techniques; A Data Structure Pre Sylvain Lespinats,Benoit Colange,Denys Dutykh Book 2022 The Editor(s) (

[复制链接]
楼主: CLAST
发表于 2025-3-28 14:35:22 | 显示全部楼层
Conclusions,Dimensionality Reduction (DR) enables analysts to perform visual exploration of high dimensional data by providing a low-dimensional representation. On its own, it allows, for instance, to identify at a glance data structures such as clusters, hierarchies or outliers.
发表于 2025-3-28 21:39:57 | 显示全部楼层
发表于 2025-3-29 02:45:45 | 显示全部楼层
Intrinsic Dimensionality,umed to live in a manifold whose dimensionality is lower than that of the data space dimensionality. The effective dimensionality of data is called intrinsic dimensionality. Its estimation is detailed Sect. 2.2.
发表于 2025-3-29 05:20:36 | 显示全部楼层
Stress Functions for Supervised Dimensionality Reduction,tion for which the desired output must be provided for a training set. Yet, DR is sometimes applied to datasets for which such annotations are available (e.g., class-information). In this context, supervised dimensionality reduction methods seek to take advantage of that information to improve the representation of the data structure.
发表于 2025-3-29 09:43:34 | 显示全部楼层
Optimization, Acceleration and Out of Sample Extensions, effectively used (Sect. 7.1). It then addresses the issue of time and space complexity and DR techniques acceleration (Sect. 7.2). Finally, it dives into out of sample extension of the mapping, which allows to position new data points a posteriori onto a given map (Sect. 7.3).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 20:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表