找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nonlinear Differential Equation Models; Ansgar Jüngel,Raul Manasevich,Henrik Shahgholian Conference proceedings 2004 Springer-Verlag Wien

[复制链接]
查看: 6666|回复: 52
发表于 2025-3-21 17:49:05 | 显示全部楼层 |阅读模式
书目名称Nonlinear Differential Equation Models
编辑Ansgar Jüngel,Raul Manasevich,Henrik Shahgholian
视频video
概述Cross-section of applied nonlinear analysis
图书封面Titlebook: Nonlinear Differential Equation Models;  Ansgar Jüngel,Raul Manasevich,Henrik Shahgholian Conference proceedings 2004 Springer-Verlag Wien
描述The papers in this book originate from lectures which were held at the "Vienna Workshop on Nonlinear Models and Analysis" – May 20–24, 2002.They represent a cross-section of the research field Applied Nonlinear Analysis with emphasis on free boundaries, fully nonlinear partial differential equations, variational methods, quasilinear partial differential equations and nonlinear kinetic models.
出版日期Conference proceedings 2004
关键词applied nonlinear analysis; nonlinear kinetic models; nonlinear partial differential equations; partial
版次1
doihttps://doi.org/10.1007/978-3-7091-0609-9
isbn_softcover978-3-7091-7208-7
isbn_ebook978-3-7091-0609-9
copyrightSpringer-Verlag Wien 2004
The information of publication is updating

书目名称Nonlinear Differential Equation Models影响因子(影响力)




书目名称Nonlinear Differential Equation Models影响因子(影响力)学科排名




书目名称Nonlinear Differential Equation Models网络公开度




书目名称Nonlinear Differential Equation Models网络公开度学科排名




书目名称Nonlinear Differential Equation Models被引频次




书目名称Nonlinear Differential Equation Models被引频次学科排名




书目名称Nonlinear Differential Equation Models年度引用




书目名称Nonlinear Differential Equation Models年度引用学科排名




书目名称Nonlinear Differential Equation Models读者反馈




书目名称Nonlinear Differential Equation Models读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:30:15 | 显示全部楼层
发表于 2025-3-22 03:46:33 | 显示全部楼层
发表于 2025-3-22 05:04:40 | 显示全部楼层
发表于 2025-3-22 09:10:05 | 显示全部楼层
Behavior of the Free Boundary Near Contact Points with the Fixed Boundary for Nonlinear Elliptic EqThe aim of this paper is to study a free boundary problem for a uniformly elliptic fully non-linear operator. Under certain assumptions we show that free and fixed boundaries meet tangentially at contact points.
发表于 2025-3-22 15:02:36 | 显示全部楼层
Global Solutions of an Obstacle-Problem-Like Equation with Two Phases,Concerning the obstacle-problem-like equation ., where λ.> 0 and λ.> 0, we give a complete characterization of all global two-phase solutions with quadratic growth both at 0 and infinity.
发表于 2025-3-22 18:56:47 | 显示全部楼层
On the Blow-Up Set For Ut = (um)xx m> 1, with Nonlinear Boundary Conditions,In this paper we give a complete description of the set of blow up points of solutions of the problem . where m> I.
发表于 2025-3-23 00:17:01 | 显示全部楼层
发表于 2025-3-23 04:27:14 | 显示全部楼层
978-3-7091-7208-7Springer-Verlag Wien 2004
发表于 2025-3-23 08:53:31 | 显示全部楼层
,A Phase Plane Analysis of the “Multi-Bubbling” Phenomenon in Some Slightly Supercritical Equations, .⩾3 and an equation involving the exponential nonlinearity in dimension .⩾2. For that purpose, we perform a phase plane analysis which emphasizes the common heuristic properties of the two problems, although more precise estimates can be obtained in some cases by variational methods.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 15:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表