找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nondifferentiable Optimization and Polynomial Problems; Naum Z. Shor Book 1998 Springer Science+Business Media Dordrecht 1998 Mathematica.

[复制链接]
查看: 9273|回复: 46
发表于 2025-3-21 19:47:01 | 显示全部楼层 |阅读模式
书目名称Nondifferentiable Optimization and Polynomial Problems
编辑Naum Z. Shor
视频video
丛书名称Nonconvex Optimization and Its Applications
图书封面Titlebook: Nondifferentiable Optimization and Polynomial Problems;  Naum Z. Shor Book 1998 Springer Science+Business Media Dordrecht 1998 Mathematica.
描述Polynomial extremal problems (PEP) constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables. Let :e = {:e 1, ... , :en} be the vector in n-dimensional real linear space Rn; n PO(:e), PI (:e), ... , Pm (:e) are polynomial functions in R with real coefficients. In general, a PEP can be formulated in the following form: (0.1) find r = inf Po(:e) subject to constraints (0.2) Pi (:e) =0, i=l, ... ,m (a constraint in the form of inequality can be written in the form of equality by introducing a new variable: for example, P( x) ~ 0 is equivalent to P(:e) + y2 = 0). Boolean and mixed polynomial problems can be written in usual form by adding for each boolean variable z the equality: Z2 - Z = O. Let a = {al, ... ,a } be integer vector with nonnegative entries {a;}f=l. n Denote by R[a](:e) monomial in n variables of the form: n R[a](:e) = IT :ef‘; ;=1 d(a) = 2:7=1 ai is the total degree of monomial R[a]. Each polynomial in n variables can be written as sum of monomials with nonzero coefficients: P(:e) = L caR[a](:e), aEA{P) IX x
出版日期Book 1998
关键词Mathematica; algebra; algorithms; calculus; complexity; graph theory; optimization; programming; combinatori
版次1
doihttps://doi.org/10.1007/978-1-4757-6015-6
isbn_softcover978-1-4419-4792-5
isbn_ebook978-1-4757-6015-6Series ISSN 1571-568X
issn_series 1571-568X
copyrightSpringer Science+Business Media Dordrecht 1998
The information of publication is updating

书目名称Nondifferentiable Optimization and Polynomial Problems影响因子(影响力)




书目名称Nondifferentiable Optimization and Polynomial Problems影响因子(影响力)学科排名




书目名称Nondifferentiable Optimization and Polynomial Problems网络公开度




书目名称Nondifferentiable Optimization and Polynomial Problems网络公开度学科排名




书目名称Nondifferentiable Optimization and Polynomial Problems被引频次




书目名称Nondifferentiable Optimization and Polynomial Problems被引频次学科排名




书目名称Nondifferentiable Optimization and Polynomial Problems年度引用




书目名称Nondifferentiable Optimization and Polynomial Problems年度引用学科排名




书目名称Nondifferentiable Optimization and Polynomial Problems读者反馈




书目名称Nondifferentiable Optimization and Polynomial Problems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:56:57 | 显示全部楼层
发表于 2025-3-22 04:12:44 | 显示全部楼层
Decomposition Methods Based on Nonsmooth Optimization,es to the external memory of a computer. Such methods convert the solution of the original problem into the solution of a series of problems of lower dimension (blocks). They are particularly efficient if the structure of each block permits the use of special, fast solution methods, or the structure
发表于 2025-3-22 04:53:52 | 显示全部楼层
发表于 2025-3-22 11:00:37 | 显示全部楼层
发表于 2025-3-22 14:21:55 | 显示全部楼层
发表于 2025-3-22 18:25:14 | 显示全部楼层
Elements of Convex Analysis, Linear Algebra, and Graph Theory,We shall review a number of fundamental properties of convex sets and functions which will be usefull in the following chapters. This review is based on the latest monographies in convex analysis and optimization, mainly, [Psh 69], [HUL 93], [Roc 70], [Roc 82a], [IT 79], [DV 85].
发表于 2025-3-22 23:42:15 | 显示全部楼层
发表于 2025-3-23 04:38:42 | 显示全部楼层
发表于 2025-3-23 06:47:36 | 显示全部楼层
978-1-4419-4792-5Springer Science+Business Media Dordrecht 1998
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 19:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表