找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Noncommutative Iwasawa Main Conjectures over Totally Real Fields; Münster, April 2011 John Coates,Peter Schneider,Otmar Venjakob Conference

[复制链接]
查看: 49738|回复: 39
发表于 2025-3-21 16:52:34 | 显示全部楼层 |阅读模式
书目名称Noncommutative Iwasawa Main Conjectures over Totally Real Fields
副标题Münster, April 2011
编辑John Coates,Peter Schneider,Otmar Venjakob
视频video
概述Includes a self-contained and simplified proof of Kakde‘s main algebraic result, as well as introductory articles on related topics.Extremely useful for many years to come.Will almost certainly lead t
丛书名称Springer Proceedings in Mathematics & Statistics
图书封面Titlebook: Noncommutative Iwasawa Main Conjectures over Totally Real Fields; Münster, April 2011 John Coates,Peter Schneider,Otmar Venjakob Conference
描述The algebraic techniques developed by Kakde will almost certainly lead eventually to major progress in the study of congruences between automorphic forms and the main conjectures of non-commutative Iwasawa theory for many motives. Non-commutative Iwasawa theory has emerged dramatically over the last decade, culminating in the recent proof of the non-commutative main conjecture for the Tate motive over a totally real p-adic Lie extension of a number field, independently by Ritter and Weiss on the one hand, and Kakde on the other. The initial ideas for giving a precise formulation of the non-commutative main conjecture were discovered by Venjakob, and were then systematically developed  in the subsequent papers by Coates-Fukaya-Kato-Sujatha-Venjakob and Fukaya-Kato. There was also parallel related work in this direction by Burns and Flach on the equivariant Tamagawa number conjecture. Subsequently, Kato discovered an important idea for studying the K_1 groups of non-abelian Iwasawa algebras in terms of the K_1 groups of the abelian quotients of these Iwasawa algebras. Kakde‘s proof is a beautiful development of these ideas of Kato, combined with an idea of Burns, and essentially redu
出版日期Conference proceedings 2013
关键词11R23, 11S40, 14H52, 14K22, 19B28; Iwasawa theory; K_1 of Iwasawa algebras; internal group logarithm; p-
版次1
doihttps://doi.org/10.1007/978-3-642-32199-3
isbn_softcover978-3-642-44335-0
isbn_ebook978-3-642-32199-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

书目名称Noncommutative Iwasawa Main Conjectures over Totally Real Fields影响因子(影响力)




书目名称Noncommutative Iwasawa Main Conjectures over Totally Real Fields影响因子(影响力)学科排名




书目名称Noncommutative Iwasawa Main Conjectures over Totally Real Fields网络公开度




书目名称Noncommutative Iwasawa Main Conjectures over Totally Real Fields网络公开度学科排名




书目名称Noncommutative Iwasawa Main Conjectures over Totally Real Fields被引频次




书目名称Noncommutative Iwasawa Main Conjectures over Totally Real Fields被引频次学科排名




书目名称Noncommutative Iwasawa Main Conjectures over Totally Real Fields年度引用




书目名称Noncommutative Iwasawa Main Conjectures over Totally Real Fields年度引用学科排名




书目名称Noncommutative Iwasawa Main Conjectures over Totally Real Fields读者反馈




书目名称Noncommutative Iwasawa Main Conjectures over Totally Real Fields读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:49:05 | 显示全部楼层
发表于 2025-3-22 01:57:32 | 显示全部楼层
发表于 2025-3-22 05:39:40 | 显示全部楼层
发表于 2025-3-22 09:32:26 | 显示全部楼层
发表于 2025-3-22 16:47:53 | 显示全部楼层
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/n/image/667199.jpg
发表于 2025-3-22 17:07:35 | 显示全部楼层
发表于 2025-3-23 00:02:03 | 显示全部楼层
发表于 2025-3-23 02:23:25 | 显示全部楼层
Noncommutative Iwasawa Main Conjectures over Totally Real Fields978-3-642-32199-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
发表于 2025-3-23 09:12:41 | 显示全部楼层
Reductions of the Main Conjecture,The main goal of this article is to discuss the relevant background needed to state the noncommutative main conjecture for certain totally real .-adic Lie extensions, and to make the important reduction to the case when the Galois group of the .-adic Lie extension is of dimension one and pro-..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 05:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表