找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Noncommutative Differential Geometry and Its Applications to Physics; Proceedings of the W Yoshiaki Maeda,Hitoshi Moriyoshi,Satoshi Watamur

[复制链接]
查看: 18622|回复: 56
发表于 2025-3-21 18:20:16 | 显示全部楼层 |阅读模式
书目名称Noncommutative Differential Geometry and Its Applications to Physics
副标题Proceedings of the W
编辑Yoshiaki Maeda,Hitoshi Moriyoshi,Satoshi Watamura
视频video
丛书名称Mathematical Physics Studies
图书封面Titlebook: Noncommutative Differential Geometry and Its Applications to Physics; Proceedings of the W Yoshiaki Maeda,Hitoshi Moriyoshi,Satoshi Watamur
描述Noncommutative differential geometry is a new approach to classical geometry. It was originally used by Fields Medalist A. Connes in the theory of foliations, where it led to striking extensions of Atiyah-Singer index theory. It also may be applicable to hitherto unsolved geometric phenomena and physical experiments. .However, noncommutative differential geometry was not well understood even among mathematicians. Therefore, an international symposium on commutative differential geometry and its applications to physics was held in Japan, in July 1999. Topics covered included: deformation problems, Poisson groupoids, operad theory, quantization problems, and D-branes. The meeting was attended by both mathematicians and physicists, which resulted in interesting discussions. This volume contains the refereed proceedings of this symposium. .Providing a state of the art overview of research in these topics, this book is suitable as a source book for a seminar in noncommutative geometry and physics..
出版日期Conference proceedings 2001
关键词D-branes; Lattice gauge theory; Poisson groupoids; differential geometry; manifold; noncommutative differ
版次1
doihttps://doi.org/10.1007/978-94-010-0704-7
isbn_softcover978-94-010-3829-4
isbn_ebook978-94-010-0704-7Series ISSN 0921-3767 Series E-ISSN 2352-3905
issn_series 0921-3767
copyrightSpringer Science+Business Media Dordrecht 2001
The information of publication is updating

书目名称Noncommutative Differential Geometry and Its Applications to Physics影响因子(影响力)




书目名称Noncommutative Differential Geometry and Its Applications to Physics影响因子(影响力)学科排名




书目名称Noncommutative Differential Geometry and Its Applications to Physics网络公开度




书目名称Noncommutative Differential Geometry and Its Applications to Physics网络公开度学科排名




书目名称Noncommutative Differential Geometry and Its Applications to Physics被引频次




书目名称Noncommutative Differential Geometry and Its Applications to Physics被引频次学科排名




书目名称Noncommutative Differential Geometry and Its Applications to Physics年度引用




书目名称Noncommutative Differential Geometry and Its Applications to Physics年度引用学科排名




书目名称Noncommutative Differential Geometry and Its Applications to Physics读者反馈




书目名称Noncommutative Differential Geometry and Its Applications to Physics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:07:45 | 显示全部楼层
Hideki Omori,Yoshiaki Maeda,Naoya Miyazaki,Akira Yoshiokasinnlos, hieraus das Resultat auf 4, 5 oder gar 10 Ziffern „genau“ zu berechnen Die letzteren Ziffern wären nicht nur überflüssig, sondern unrichtig. Der Rauminhalt eines prismatischen Körpers von 2511 mm Länge, 283 mm Breite und 154 mm Höhe beträgt nicht 109,434402 dm., sondern 109 dm.. Wären die e
发表于 2025-3-22 04:20:35 | 显示全部楼层
Simon G. Scott,Krzysztof P. Wojciechowskisinnlos, hieraus das Resultat auf 4, 5 oder gar 10 Ziffern „genau“ zu berechnen Die letzteren Ziffern wären nicht nur überflüssig, sondern unrichtig. Der Rauminhalt eines prismatischen Körpers von 2511 mm Länge, 283 mm Breite und 154 mm Höhe beträgt nicht 109,434402 dm., sondern 109 dm.. Wären die e
发表于 2025-3-22 07:27:48 | 显示全部楼层
发表于 2025-3-22 12:37:37 | 显示全部楼层
发表于 2025-3-22 15:23:41 | 显示全部楼层
Methods of Equivariant Quantization,p of symmetries. Examples are provided by conformai and projective differential geometry: given a smooth manifold . endowed with a flat conformal/projective structure, we establish a canonical isomorphism between the space of symmetric contravariant tensor fields on . and the space of differential o
发表于 2025-3-22 18:57:34 | 显示全部楼层
发表于 2025-3-22 22:17:32 | 显示全部楼层
发表于 2025-3-23 01:24:09 | 显示全部楼层
发表于 2025-3-23 06:19:06 | 显示全部楼层
Intersection Numbers on the Moduli Spaces of Stable Maps in Genus 0,ation for these classes in terms of boundary strata, derive differential equations for the generating functions of the Gromov-Witten invariants of . twisted by these tautological classes, and prove that these intersection numbers are completely determined by the Gromov-Witten invariants of .. This r
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 09:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表