找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Non-Euclidean Geometries; János Bolyai Memoria András Prékopa,Emil Molnár Book 2006 Springer-Verlag US 2006 Applications in physics.Axiomat

[复制链接]
查看: 22076|回复: 51
发表于 2025-3-21 17:10:22 | 显示全部楼层 |阅读模式
书目名称Non-Euclidean Geometries
副标题János Bolyai Memoria
编辑András Prékopa,Emil Molnár
视频video
概述Focuses specifically on the contributions of János Bolyai to non-Euclidean geometry.Includes supplementary material:
丛书名称Mathematics and Its Applications
图书封面Titlebook: Non-Euclidean Geometries; János Bolyai Memoria András Prékopa,Emil Molnár Book 2006 Springer-Verlag US 2006 Applications in physics.Axiomat
描述."From nothing I have created a new different world," wrote János Bolyai to his father, Wolgang Bolyai, on November 3, 1823, to let him know his discovery of non-Euclidean geometry, as we call it today. The results of Bolyai and the co-discoverer, the Russian Lobachevskii, changed the course of mathematics, opened the way for modern physical theories of the twentieth century, and had an impact on the history of human culture...The papers in this volume, which commemorates the 200th anniversary of the birth of János Bolyai, were written by leading scientists of non-Euclidean geometry, its history, and its applications. Some of the papers present new discoveries about the life and works of János Bolyai and the history of non-Euclidean geometry, others deal with geometrical axiomatics; polyhedra; fractals; hyperbolic, Riemannian and discrete geometry; tilings; visualization; and applications in physics..
出版日期Book 2006
关键词Applications in physics; Axiomatics; History of Mathematics; History of geometry; János Bolyai; Non-Eucli
版次1
doihttps://doi.org/10.1007/0-387-29555-0
isbn_softcover978-1-4614-9771-4
isbn_ebook978-0-387-29555-8
copyrightSpringer-Verlag US 2006
The information of publication is updating

书目名称Non-Euclidean Geometries影响因子(影响力)




书目名称Non-Euclidean Geometries影响因子(影响力)学科排名




书目名称Non-Euclidean Geometries网络公开度




书目名称Non-Euclidean Geometries网络公开度学科排名




书目名称Non-Euclidean Geometries被引频次




书目名称Non-Euclidean Geometries被引频次学科排名




书目名称Non-Euclidean Geometries年度引用




书目名称Non-Euclidean Geometries年度引用学科排名




书目名称Non-Euclidean Geometries读者反馈




书目名称Non-Euclidean Geometries读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:03:29 | 显示全部楼层
发表于 2025-3-22 00:32:29 | 显示全部楼层
发表于 2025-3-22 06:14:08 | 显示全部楼层
发表于 2025-3-22 10:36:23 | 显示全部楼层
发表于 2025-3-22 16:33:57 | 显示全部楼层
Flexible Octahedra in the Hyperbolic Space flexible of orders 1 or 2 is quite the same as in the Euclidean case. Also Euclidean results concerning continuously flexible octahedra remain valid in hyperbolic geometry: There are at least three types of continuously flexible octahedra in #x210D;.; the line-symmetric Type 1, Type 2 with planar s
发表于 2025-3-22 19:28:32 | 显示全部楼层
A Volume Formula for Generalised Hyperbolic Tetrahedrapolar truncation at the vertices lying outside the space. In this paper it is proved that a volume formula for ordinary hyperbolic tetrahedra devised by J. Murakami and M. Yano can be applied to such generalised tetrahedra. There are two key tools for the proof; one is the so-called Schläfli’s diffe
发表于 2025-3-22 23:32:04 | 显示全部楼层
Jeremy Graychgeführten Therapiestunde mit einem magersüchtigen Mädchen. Beim gemeinsamen Nachdenken über den gerade erlebten therapeutischen Prozeß stießen wir auf das wohl zentralste Konzept zur Beschreibung menschlichen Zusammenlebens, vermutlich gar allen Zusammenlebens: das Konzept des Liebens. Unser zunäc
发表于 2025-3-23 05:06:50 | 显示全部楼层
Elemér Kisschgeführten Therapiestunde mit einem magersüchtigen Mädchen. Beim gemeinsamen Nachdenken über den gerade erlebten therapeutischen Prozeß stießen wir auf das wohl zentralste Konzept zur Beschreibung menschlichen Zusammenlebens, vermutlich gar allen Zusammenlebens: das Konzept des Liebens. Unser zunäc
发表于 2025-3-23 07:19:03 | 显示全部楼层
chgeführten Therapiestunde mit einem magersüchtigen Mädchen. Beim gemeinsamen Nachdenken über den gerade erlebten therapeutischen Prozeß stießen wir auf das wohl zentralste Konzept zur Beschreibung menschlichen Zusammenlebens, vermutlich gar allen Zusammenlebens: das Konzept des Liebens. Unser zunäc
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 12:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表