找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Non-Convex Multi-Objective Optimization; Panos M. Pardalos,Antanas Žilinskas,Julius Žilinsk Book Aug 20171st edition Springer Internationa

[复制链接]
查看: 18772|回复: 48
发表于 2025-3-21 16:29:03 | 显示全部楼层 |阅读模式
书目名称Non-Convex Multi-Objective Optimization
编辑Panos M. Pardalos,Antanas Žilinskas,Julius Žilinsk
视频video
概述Summarizes non-convex multi-objective optimization problems and methods.Supplies comprehensive coverage, theoretical background, and examples of practical applications.Explains several directions of m
丛书名称Springer Optimization and Its Applications
图书封面Titlebook: Non-Convex Multi-Objective Optimization;  Panos M. Pardalos,Antanas Žilinskas,Julius Žilinsk Book Aug 20171st edition Springer Internationa
描述Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in chemical engineering, and business process management are included to aide researchers and graduate students in mathematics, computer science, engineering, economics, and busi
出版日期Book Aug 20171st edition
关键词Branch-and-Bound approach; Lipschitz optimization; applications in engineering; non-convex multi-object
版次1
doihttps://doi.org/10.1007/978-3-319-61007-8
isbn_softcover978-3-319-86981-0
issn_series 1931-6828
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Non-Convex Multi-Objective Optimization影响因子(影响力)




书目名称Non-Convex Multi-Objective Optimization影响因子(影响力)学科排名




书目名称Non-Convex Multi-Objective Optimization网络公开度




书目名称Non-Convex Multi-Objective Optimization网络公开度学科排名




书目名称Non-Convex Multi-Objective Optimization被引频次




书目名称Non-Convex Multi-Objective Optimization被引频次学科排名




书目名称Non-Convex Multi-Objective Optimization年度引用




书目名称Non-Convex Multi-Objective Optimization年度引用学科排名




书目名称Non-Convex Multi-Objective Optimization读者反馈




书目名称Non-Convex Multi-Objective Optimization读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:41:04 | 显示全部楼层
Panos M. Pardalos,Antanas Žilinskas,Julius ŽilinskSummarizes non-convex multi-objective optimization problems and methods.Supplies comprehensive coverage, theoretical background, and examples of practical applications.Explains several directions of m
发表于 2025-3-22 00:39:23 | 显示全部楼层
发表于 2025-3-22 07:01:43 | 显示全部楼层
发表于 2025-3-22 10:35:46 | 显示全部楼层
Springer Optimization and Its Applicationshttp://image.papertrans.cn/n/image/666876.jpg
发表于 2025-3-22 14:36:03 | 显示全部楼层
发表于 2025-3-22 19:49:46 | 显示全部楼层
Scalarizatione reduction of a problem of multi-objective optimization to a single-objective optimization one normally is called scalarization. To find a discrete representation of the set of Pareto optimal solutions, a sequence of single-objective optimization problems should be solved, and they should hold the
发表于 2025-3-22 21:23:07 | 显示全部楼层
发表于 2025-3-23 03:36:34 | 显示全部楼层
发表于 2025-3-23 06:45:52 | 显示全部楼层
Multi-Objective Branch and Boundt and discard sets of feasible decisions which cannot contain optimal decisions. The search process can be illustrated as a search tree with the root corresponding to the search space and branches corresponding to its subsets. An iteration of the algorithm processes a node in the search tree that re
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 07:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表