找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Non-Asymptotic Analysis of Approximations for Multivariate Statistics; Yasunori Fujikoshi,Vladimir V. Ulyanov Book 2020 The Author(s), und

[复制链接]
楼主: 深谋远虑
发表于 2025-3-23 10:19:31 | 显示全部楼层
General Approach to Constructing Non-Asymptotic Bounds,ing the case of dependent summands and the case when the distributions of weighted sums are approximated by the normal distribution with accuracy of order .. We consider also applications for distributions of .-statistics of the second order and higher.
发表于 2025-3-23 15:51:11 | 显示全部楼层
SpringerBriefs in Statisticshttp://image.papertrans.cn/n/image/666853.jpg
发表于 2025-3-23 18:58:07 | 显示全部楼层
发表于 2025-3-24 00:02:42 | 显示全部楼层
发表于 2025-3-24 06:05:57 | 显示全部楼层
发表于 2025-3-24 09:39:57 | 显示全部楼层
Likelihood Ratio Tests with Box-Type Moments,l populations. First, their large-sample approximation method is explained. Then, we derive their high-dimensional asymptotic expansions. Further, it is noted that an error bound for high-dimensional asymptotic expansions can be derived for some statistics including the lambda distribution.
发表于 2025-3-24 11:07:26 | 显示全部楼层
978-981-13-2615-8The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2020
发表于 2025-3-24 17:58:02 | 显示全部楼层
Non-Asymptotic Analysis of Approximations for Multivariate Statistics978-981-13-2616-5Series ISSN 2191-544X Series E-ISSN 2191-5458
发表于 2025-3-24 19:41:48 | 显示全部楼层
发表于 2025-3-25 01:24:17 | 显示全部楼层
Non-Asymptotic Bounds,e precisely, such statistical statements are evaluated when . and/or . tend to infinity. On the other hand, “non-asymptotic” results are derived under the condition that ., ., and the parameters involved are fixed. In this chapter, we explain non-asymptotic error bounds, while giving the Edgeworth e
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 23:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表