找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Next Generation Computing Technologies on Computational Intelligence; 4th International Co Manish Prateek,Durgansh Sharma,Neeraj Kumar Conf

[复制链接]
查看: 54107|回复: 58
发表于 2025-3-21 16:34:39 | 显示全部楼层 |阅读模式
书目名称Next Generation Computing Technologies on Computational Intelligence
副标题4th International Co
编辑Manish Prateek,Durgansh Sharma,Neeraj Kumar
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Next Generation Computing Technologies on Computational Intelligence; 4th International Co Manish Prateek,Durgansh Sharma,Neeraj Kumar Conf
描述.The 18 full and 13 short papers presented were carefully reviewed and selected from 255 submissions. There were organized in topical sections named: Image Processing, Pattern Analysis and Machine Vision; Information and Data Convergence; Disruptive Technologies for Future; E-Governance and Smart World.
出版日期Conference proceedings 2019
关键词artificial intelligence; computer networks; computer science; computer systems; network protocols; signal
版次1
doihttps://doi.org/10.1007/978-981-15-1718-1
isbn_softcover978-981-15-1717-4
isbn_ebook978-981-15-1718-1Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

书目名称Next Generation Computing Technologies on Computational Intelligence影响因子(影响力)




书目名称Next Generation Computing Technologies on Computational Intelligence影响因子(影响力)学科排名




书目名称Next Generation Computing Technologies on Computational Intelligence网络公开度




书目名称Next Generation Computing Technologies on Computational Intelligence网络公开度学科排名




书目名称Next Generation Computing Technologies on Computational Intelligence被引频次




书目名称Next Generation Computing Technologies on Computational Intelligence被引频次学科排名




书目名称Next Generation Computing Technologies on Computational Intelligence年度引用




书目名称Next Generation Computing Technologies on Computational Intelligence年度引用学科排名




书目名称Next Generation Computing Technologies on Computational Intelligence读者反馈




书目名称Next Generation Computing Technologies on Computational Intelligence读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:38:36 | 显示全部楼层
Emotion Recognition in Poetry Using Ensemble of Classifiersposed emotion recognition model uses a novel ensemble classifier schema based on SVM, Logistic regression, NB Classifier, and Emotion Modifier Preserved Vector Space Model. The results show that the proposed model achieves satisfactory precision, Recall and F-measure in recognizing emotions from poems.
发表于 2025-3-22 02:01:58 | 显示全部楼层
An Approach to Threshold Based Human Skin Color Recognition and Segmentation in Different Color Mode differentiate the color and luminance information still in the uncharacteristic illumination circumstances. The investigational outcome illustrates the effectiveness of color model based recognition of skin tone in color images.
发表于 2025-3-22 08:15:29 | 显示全部楼层
发表于 2025-3-22 09:22:13 | 显示全部楼层
Distributed Multi-criteria Based Clusterhead Selection Approach for MANETn NS-2.35. Experimental results show that the proposed DMBCA achieves much better results in terms of performance parameters such as packet delivery ratio, average throughput and routing overhead than conventional AODV technique.
发表于 2025-3-22 12:57:59 | 显示全部楼层
NStackSenti: Evaluation of a Multi-level Approach for Detecting the Sentiment of Usersenti is applied on two separate datasets to demonstrate the effectiveness in terms of accuracy. NStackSenti provides better accuracy with trigram than unigram and bigram. It provides 83.7% and 86.24% accuracy on 2000 and 50000 data respectively.
发表于 2025-3-22 18:38:56 | 显示全部楼层
发表于 2025-3-23 00:39:32 | 显示全部楼层
发表于 2025-3-23 04:46:03 | 显示全部楼层
发表于 2025-3-23 08:33:18 | 显示全部楼层
Parkinson’s Disease Diagnosis by fMRI Images Using MFCC Feature Extraction feature extraction of fMRI images. Mean and Standard deviation of the extracted coefficients was calculated which was further classified using the Classifier Learner. Obtained results showed that MFCC coefficients are effectively able to identify PD and normal person.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 05:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表