找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Newton Methods for Nonlinear Problems; Affine Invariance an Peter Deuflhard Textbook 2011 Springer-Verlag Berlin Heidelberg 2011 Gauss-newt

[复制链接]
查看: 50988|回复: 35
发表于 2025-3-21 17:10:11 | 显示全部楼层 |阅读模式
书目名称Newton Methods for Nonlinear Problems
副标题Affine Invariance an
编辑Peter Deuflhard
视频video
丛书名称Springer Series in Computational Mathematics
图书封面Titlebook: Newton Methods for Nonlinear Problems; Affine Invariance an Peter Deuflhard Textbook 2011 Springer-Verlag Berlin Heidelberg 2011 Gauss-newt
描述This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite dimension (algebraic systems) and in infinite dimension (ordinary and partial differential equations). Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. The term ‘affine invariance‘ means that the presented algorithms and their convergence analysis are invariant under one out of four subclasses of affine transformations of the problem to be solved. Compared to traditional textbooks, the distinguishing affine invariance approach leads to shorter theorems and proofs and permits the construction of fully adaptive algorithms. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.
出版日期Textbook 2011
关键词Gauss-newton methods; Newton methods; affine invariance; continuation methods; differential equations; or
版次1
doihttps://doi.org/10.1007/978-3-642-23899-4
isbn_softcover978-3-642-23898-7
isbn_ebook978-3-642-23899-4Series ISSN 0179-3632 Series E-ISSN 2198-3712
issn_series 0179-3632
copyrightSpringer-Verlag Berlin Heidelberg 2011
The information of publication is updating

书目名称Newton Methods for Nonlinear Problems影响因子(影响力)




书目名称Newton Methods for Nonlinear Problems影响因子(影响力)学科排名




书目名称Newton Methods for Nonlinear Problems网络公开度




书目名称Newton Methods for Nonlinear Problems网络公开度学科排名




书目名称Newton Methods for Nonlinear Problems被引频次




书目名称Newton Methods for Nonlinear Problems被引频次学科排名




书目名称Newton Methods for Nonlinear Problems年度引用




书目名称Newton Methods for Nonlinear Problems年度引用学科排名




书目名称Newton Methods for Nonlinear Problems读者反馈




书目名称Newton Methods for Nonlinear Problems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:19:29 | 显示全部楼层
发表于 2025-3-22 00:59:31 | 显示全部楼层
发表于 2025-3-22 06:41:37 | 显示全部楼层
0179-3632 illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.978-3-642-23898-7978-3-642-23899-4Series ISSN 0179-3632 Series E-ISSN 2198-3712
发表于 2025-3-22 10:24:18 | 显示全部楼层
发表于 2025-3-22 13:11:17 | 显示全部楼层
Peter Deuflhard, das deutlich über den Wachstumsraten des globalen Bruttosozialproduktes liegt (. (2003a); . (2003b); . (2002), S. 3). Begünstigt durch attraktive Investitionsbedingungen und ein nahezu unerschöpfliches Reservoir an Arbeitskräften kommt es zu einer Verlagerung der Produktion insbesondere arbeitsint
发表于 2025-3-22 17:15:26 | 显示全部楼层
发表于 2025-3-22 23:26:19 | 显示全部楼层
Textbook 2011c systems) and in infinite dimension (ordinary and partial differential equations). Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. The term ‘affine invariance‘ means that the presented algorithms and their convergence analysis are in
发表于 2025-3-23 02:46:33 | 显示全部楼层
发表于 2025-3-23 08:36:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 09:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表