找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: New Frontiers in Quantitative Methods in Informatics; 7th Workshop, InfQ 2 Simonetta Balsamo,Andrea Marin,Enrico Vicario Conference proceed

[复制链接]
查看: 34717|回复: 48
发表于 2025-3-21 18:40:42 | 显示全部楼层 |阅读模式
书目名称New Frontiers in Quantitative Methods in Informatics
副标题7th Workshop, InfQ 2
编辑Simonetta Balsamo,Andrea Marin,Enrico Vicario
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: New Frontiers in Quantitative Methods in Informatics; 7th Workshop, InfQ 2 Simonetta Balsamo,Andrea Marin,Enrico Vicario Conference proceed
描述This book constitutes the refereed proceedings of the 7th Workshop on New Frontiers in Quantitative Methods in Informatics, InfQ 2017, held in Venice, Italy, in December 2017..The 11 revised full papers and the one revised short paper presented were carefully reviewed and selected from 22 submissions. The papers are organized in topical sections on networking and mobile applications; applications of quantitative modeling; big data processing and IoT; theory, methods and tools for quantitative analysis.
出版日期Conference proceedings 2018
关键词cloud computing; formal methods; graph theory; Markov chains; model checking; optimization; performance ev
版次1
doihttps://doi.org/10.1007/978-3-319-91632-3
isbn_softcover978-3-319-91631-6
isbn_ebook978-3-319-91632-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

书目名称New Frontiers in Quantitative Methods in Informatics影响因子(影响力)




书目名称New Frontiers in Quantitative Methods in Informatics影响因子(影响力)学科排名




书目名称New Frontiers in Quantitative Methods in Informatics网络公开度




书目名称New Frontiers in Quantitative Methods in Informatics网络公开度学科排名




书目名称New Frontiers in Quantitative Methods in Informatics被引频次




书目名称New Frontiers in Quantitative Methods in Informatics被引频次学科排名




书目名称New Frontiers in Quantitative Methods in Informatics年度引用




书目名称New Frontiers in Quantitative Methods in Informatics年度引用学科排名




书目名称New Frontiers in Quantitative Methods in Informatics读者反馈




书目名称New Frontiers in Quantitative Methods in Informatics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:19:51 | 显示全部楼层
Vs-Driven Big Data Process Developmenttime. To do so, the approach relies on annotating Big Data process workflows (and their individual elements) with relevant V-attribute values, which are then mapped into resource requirements and used in a performance model.
发表于 2025-3-22 01:26:01 | 显示全部楼层
发表于 2025-3-22 07:52:21 | 显示全部楼层
发表于 2025-3-22 12:48:43 | 显示全部楼层
发表于 2025-3-22 13:49:55 | 显示全部楼层
Conference proceedings 2018s. The papers are organized in topical sections on networking and mobile applications; applications of quantitative modeling; big data processing and IoT; theory, methods and tools for quantitative analysis.
发表于 2025-3-22 18:06:24 | 显示全部楼层
1865-0929 submissions. The papers are organized in topical sections on networking and mobile applications; applications of quantitative modeling; big data processing and IoT; theory, methods and tools for quantitative analysis.978-3-319-91631-6978-3-319-91632-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
发表于 2025-3-22 22:26:02 | 显示全部楼层
Conference proceedings 2018 Italy, in December 2017..The 11 revised full papers and the one revised short paper presented were carefully reviewed and selected from 22 submissions. The papers are organized in topical sections on networking and mobile applications; applications of quantitative modeling; big data processing and
发表于 2025-3-23 03:52:18 | 显示全部楼层
Auto-Scaling in Data Stream Processing Applications: A Model-Based Reinforcement Learning Approachopose two model-based approaches and compare them to the baseline Q-learning algorithm. Our numerical investigations show that the proposed solutions provide better performance and faster convergence than the baseline.
发表于 2025-3-23 05:52:35 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 07:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表