找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: New Frontiers in Bayesian Statistics; BAYSM 2021, Online, Raffaele Argiento,Federico Camerlenghi,Sally Pagan Conference proceedings 2022 T

[复制链接]
楼主: Alacrity
发表于 2025-3-28 16:14:34 | 显示全部楼层
,Power-Expected-Posterior Methodology with Baseline Shrinkage Priors,rior is updated using imaginary data. This work focuses on normal regression models when the number of observations . is smaller than the number of explanatory variables .. We introduce the PEP prior methodology using different baseline shrinkage priors and we perform some comparisons in simulated data sets.
发表于 2025-3-28 21:33:31 | 显示全部楼层
,Bayesian Nonparametric Scalar-on-Image Regression via Potts-Gibbs Random Partition Models,ocess is spatially dependent, thereby encouraging groups representing spatially contiguous regions. In addition, Bayesian shrinkage priors are utilised to identify the covariates and regions that are most relevant for the prediction. The proposed model is illustrated using the simulated data sets.
发表于 2025-3-29 00:22:42 | 显示全部楼层
,A Bayesian Nonparametric Test for Cross-Group Differences Relative to a Control,up distributions are modeled in a flexible way using a dependent Dirichlet process. Monte Carlo experiments suggest that our proposal performs better than state-of-the-art frequentist alternatives for small sample sizes.
发表于 2025-3-29 06:09:40 | 显示全部楼层
发表于 2025-3-29 08:53:09 | 显示全部楼层
发表于 2025-3-29 11:38:52 | 显示全部楼层
,Block Structured Graph Priors in Gaussian Graphical Models,arlo Markov chain that avoids any . normalizing constant calculation when comparing graphical models. The novelty of this procedure is that it looks for block structured graphs, hence proposing moves that add or remove not just a single link but an entire group of them.
发表于 2025-3-29 17:19:02 | 显示全部楼层
发表于 2025-3-29 20:08:02 | 显示全部楼层
发表于 2025-3-30 01:17:51 | 显示全部楼层
Conference proceedings 2022The book is intended for a broad audience of people interested in statistics, and provides a series of stimulating contributions on theoretical, methodological, and computational aspects of Bayesian statistics..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 10:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表