找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: New Frontiers in Applied Data Mining; PAKDD 2008 Internati Sanjay Chawla,Takashi Washio,Akihiro Inokuchi Conference proceedings 2009 Spring

[复制链接]
查看: 49878|回复: 57
发表于 2025-3-21 17:29:34 | 显示全部楼层 |阅读模式
书目名称New Frontiers in Applied Data Mining
副标题PAKDD 2008 Internati
编辑Sanjay Chawla,Takashi Washio,Akihiro Inokuchi
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: New Frontiers in Applied Data Mining; PAKDD 2008 Internati Sanjay Chawla,Takashi Washio,Akihiro Inokuchi Conference proceedings 2009 Spring
描述This book constitutes the proceedings of the PAKDD Workshops 2008, namely ALSIP 2008, DMDRM 2008, and IDM 2008. The workshops were held in conjunction with the PAKDD conference in Osaka, Japan, during May 20-23, 2008. The 17 papers presented were carefully reviewed and selected from 38 submissions. The International Workshop on Algorithms for Large-Sale Information Processing in Knowledge Discovery (ALSIP) focused on exchanging fresh ideas on large-scale data processing in the problems of data mining, clustering, machine learning, statistical analysis, and other computational aspects of knowledge discovery problems. The Workshop on Data Mining for Decision Making and Risk Management (DMDRM) covered data mining and machine learning approaches, statistical approaches, chance discovery, active mining and application of these techniques to medicine, marketing, security, decision support in business, social activities, human relationships, chemistry and sensor data. The Workshop on Interactive Data Mining Overview (IDM) discussed various interactive data mining researches such as interactive information retrieval, information gathering sysetms, personalization systems, recommendation sy
出版日期Conference proceedings 2009
关键词ALS; Clustering; algorithms; data mining; information processing; knowledge; knowledge discovery; learning;
版次1
doihttps://doi.org/10.1007/978-3-642-00399-8
isbn_softcover978-3-642-00398-1
isbn_ebook978-3-642-00399-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

书目名称New Frontiers in Applied Data Mining影响因子(影响力)




书目名称New Frontiers in Applied Data Mining影响因子(影响力)学科排名




书目名称New Frontiers in Applied Data Mining网络公开度




书目名称New Frontiers in Applied Data Mining网络公开度学科排名




书目名称New Frontiers in Applied Data Mining被引频次




书目名称New Frontiers in Applied Data Mining被引频次学科排名




书目名称New Frontiers in Applied Data Mining年度引用




书目名称New Frontiers in Applied Data Mining年度引用学科排名




书目名称New Frontiers in Applied Data Mining读者反馈




书目名称New Frontiers in Applied Data Mining读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:03:52 | 显示全部楼层
发表于 2025-3-22 00:57:50 | 显示全部楼层
Incrementally Mining Recently Repeating Patterns over Data Streamsf various applications is generated as a data stream. Based on time sensitive concern, mining repeating patterns from the whole history data sequence of a data stream does not extract the current trend of patterns over the stream. Therefore, the traditional strategies for mining repeating patterns o
发表于 2025-3-22 06:21:28 | 显示全部楼层
发表于 2025-3-22 10:10:25 | 显示全部楼层
发表于 2025-3-22 16:28:52 | 显示全部楼层
A Framework for Mining Fuzzy Association Rules from Composite Items each feature a number of values derived from a common schema. To apply fuzzy Association Rule Mining (ARM) we partition the property values into fuzzy property sets. This paper describes: (i) the process of deriving the fuzzy sets (Composite Fuzzy ARM or CFARM) and (ii) a unique property ARM algori
发表于 2025-3-22 18:22:40 | 显示全部楼层
发表于 2025-3-23 00:04:54 | 显示全部楼层
发表于 2025-3-23 03:19:19 | 显示全部楼层
Sibling Distance for Rooted Labeled Treesbel of a node and the sequence of labels of its children. Then, we show that .. gives a . on the tree edit distance . such that ..(..,..) ≤ 4.(..,..). Next, we design the algorithm to compute the sibling histogram in .(.) time for . trees and in .(.) time for . trees, where . and . are the number of
发表于 2025-3-23 05:34:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 06:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表