找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neurocomputation in Remote Sensing Data Analysis; Proceedings of Conce Ioannis Kanellopoulos,Graeme G. Wilkinson (Head),J Conference procee

[复制链接]
查看: 48203|回复: 63
发表于 2025-3-21 17:35:18 | 显示全部楼层 |阅读模式
书目名称Neurocomputation in Remote Sensing Data Analysis
副标题Proceedings of Conce
编辑Ioannis Kanellopoulos,Graeme G. Wilkinson (Head),J
视频video
概述Application of neural networks in remote sensing - Combination of advanced computing techniques and operational remote sensing needs - Presentation of state of the art techniques used across Europe fo
图书封面Titlebook: Neurocomputation in Remote Sensing Data Analysis; Proceedings of Conce Ioannis Kanellopoulos,Graeme G. Wilkinson (Head),J Conference procee
描述Since 1994 the European Commission has been supporting activities under the Environment and Climate programme of research and technological de­ velopment, with the aim of developing cost-effective applications of satellite Earth observation (EO) for both environmental monitoring and research. This action has included support to methodological research, aimed at the development and evaluation of new techniques forming part ofthe chain of processing needed to transform data into useful information. Wherever appropriate, the Commission has emphasised the coordination of ongoing research funded at the national level, through the mechanism of concerted actions. Concerted actions are flexible and efficient means to marshal efforts at the European level for a certain period. They are proposed by groups of researchers active in a given field who have identified the added value to be gained by European cooperation, whilst continuing to pursue their own individual projects. In view of the rapid developments in the field of neural network over the last 10 years, together with the growing interest ofthe Earth observation community in this approach as a tool for data interpretation, the Commiss
出版日期Conference proceedings 1997
关键词Augmented Reality; Map; Multispectral Image Classification; Neural Networks; Remote Sensing; Satellite Im
版次1
doihttps://doi.org/10.1007/978-3-642-59041-2
isbn_softcover978-3-642-63828-2
isbn_ebook978-3-642-59041-2
copyrightSpringer-Verlag Berlin · Heidelberg 1997
The information of publication is updating

书目名称Neurocomputation in Remote Sensing Data Analysis影响因子(影响力)




书目名称Neurocomputation in Remote Sensing Data Analysis影响因子(影响力)学科排名




书目名称Neurocomputation in Remote Sensing Data Analysis网络公开度




书目名称Neurocomputation in Remote Sensing Data Analysis网络公开度学科排名




书目名称Neurocomputation in Remote Sensing Data Analysis被引频次




书目名称Neurocomputation in Remote Sensing Data Analysis被引频次学科排名




书目名称Neurocomputation in Remote Sensing Data Analysis年度引用




书目名称Neurocomputation in Remote Sensing Data Analysis年度引用学科排名




书目名称Neurocomputation in Remote Sensing Data Analysis读者反馈




书目名称Neurocomputation in Remote Sensing Data Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:41:34 | 显示全部楼层
Neural Nets and Multichannel Image Processing Applications,eural network structures, perfectly suited for such purposes due to the accuracy and high speed of computation. The proposed framework handles multichannel data in a compact form and, thus, it is directly applicable to remote sensing.
发表于 2025-3-22 03:04:54 | 显示全部楼层
发表于 2025-3-22 08:02:25 | 显示全部楼层
Conference proceedings 1997ent, with the aim of developing cost-effective applications of satellite Earth observation (EO) for both environmental monitoring and research. This action has included support to methodological research, aimed at the development and evaluation of new techniques forming part ofthe chain of processin
发表于 2025-3-22 10:42:57 | 显示全部楼层
发表于 2025-3-22 14:53:32 | 显示全部楼层
Non-Linear Diffusion as a Neuron-Like Paradigm for Low-Level Vision, processing is presented, that is based on the evolution of coupled, non-linear diffusion equations. The illustrations are focussed on feature preserving noise reduction, but the framework is more general.
发表于 2025-3-22 19:39:21 | 显示全部楼层
发表于 2025-3-23 00:02:31 | 显示全部楼层
发表于 2025-3-23 01:21:57 | 显示全部楼层
发表于 2025-3-23 05:33:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 20:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表