找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Networks for Identification, Prediction and Control; Duc Truong Pham,Xing Liu Book 1995 Springer-Verlag London Limited 1995 backpro

[复制链接]
查看: 39191|回复: 43
发表于 2025-3-21 18:27:40 | 显示全部楼层 |阅读模式
书目名称Neural Networks for Identification, Prediction and Control
编辑Duc Truong Pham,Xing Liu
视频videohttp://file.papertrans.cn/664/663717/663717.mp4
图书封面Titlebook: Neural Networks for Identification, Prediction and Control;  Duc Truong Pham,Xing Liu Book 1995 Springer-Verlag London Limited 1995 backpro
描述In recent years, there has been a growing interest in applying neural networks to dynamic systems identification (modelling), prediction and control. Neural networks are computing systems characterised by the ability to learn from examples rather than having to be programmed in a conventional sense. Their use enables the behaviour of complex systems to be modelled and predicted and accurate control to be achieved through training, without a priori information about the systems‘ structures or parameters. This book describes examples of applications of neural networks In modelling, prediction and control. The topics covered include identification of general linear and non-linear processes, forecasting of river levels, stock market prices and currency exchange rates, and control of a time-delayed plant and a two-joint robot. These applications employ the major types of neural networks and learning algorithms. The neural network types considered in detail are the muhilayer perceptron (MLP), the Elman and Jordan networks and the Group-Method-of-Data-Handling (GMDH) network. In addition, cerebellar-model-articulation-controller (CMAC) networks and neuromorphic fuzzy logic systems are als
出版日期Book 1995
关键词backpropagation; control; evolution; fuzzy; fuzzy logic; identification; learning; logic; modeling; network; n
版次1
doihttps://doi.org/10.1007/978-1-4471-3244-8
isbn_softcover978-1-4471-3246-2
isbn_ebook978-1-4471-3244-8
copyrightSpringer-Verlag London Limited 1995
The information of publication is updating

书目名称Neural Networks for Identification, Prediction and Control影响因子(影响力)




书目名称Neural Networks for Identification, Prediction and Control影响因子(影响力)学科排名




书目名称Neural Networks for Identification, Prediction and Control网络公开度




书目名称Neural Networks for Identification, Prediction and Control网络公开度学科排名




书目名称Neural Networks for Identification, Prediction and Control被引频次




书目名称Neural Networks for Identification, Prediction and Control被引频次学科排名




书目名称Neural Networks for Identification, Prediction and Control年度引用




书目名称Neural Networks for Identification, Prediction and Control年度引用学科排名




书目名称Neural Networks for Identification, Prediction and Control读者反馈




书目名称Neural Networks for Identification, Prediction and Control读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:13:02 | 显示全部楼层
Neural Networks for Identification, Prediction and Control978-1-4471-3244-8
发表于 2025-3-22 03:26:33 | 显示全部楼层
发表于 2025-3-22 06:07:05 | 显示全部楼层
Book 1995earning algorithms. The neural network types considered in detail are the muhilayer perceptron (MLP), the Elman and Jordan networks and the Group-Method-of-Data-Handling (GMDH) network. In addition, cerebellar-model-articulation-controller (CMAC) networks and neuromorphic fuzzy logic systems are als
发表于 2025-3-22 12:22:52 | 显示全部楼层
orks and learning algorithms. The neural network types considered in detail are the muhilayer perceptron (MLP), the Elman and Jordan networks and the Group-Method-of-Data-Handling (GMDH) network. In addition, cerebellar-model-articulation-controller (CMAC) networks and neuromorphic fuzzy logic systems are als978-1-4471-3246-2978-1-4471-3244-8
发表于 2025-3-22 13:18:00 | 显示全部楼层
Dynamic System Identification Using Recurrent Neural Networks,lements are connected in such a way that all signals flow in one direction from input units to output units. In recurrent networks there are both feedforward and feedback connections along which signals can propagate in opposite directions.
发表于 2025-3-22 20:28:08 | 显示全部楼层
Modelling and Prediction Using GMDH Networks, identification methods include simplicity of implementation and good approximation properties [Warwick et aI, 1992]. In feedforward network based identification schemes, neural networks are used to represent the implied static mapping between the available input and output data. The network structu
发表于 2025-3-22 22:39:20 | 显示全部楼层
发表于 2025-3-23 01:37:37 | 显示全部楼层
发表于 2025-3-23 05:37:21 | 显示全部楼层
Neuromorphic Fuzzy Controller Design,l network which can be trained using a Genetic Algorithm (GA). The GA is employed to determine the membership functions for the input variable, the quantisation levels of the output variable and the elements of the relation matrix of the FLC. The reasons for such a neuromorphic FLC are provided. The
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-22 02:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表