用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 27th International C Haiqin Yang,Kitsuchart Pasupa,Irwin King Conference proceedings 2020 Springer Nature Sw

[复制链接]
查看: 8901|回复: 57
发表于 2025-3-21 17:44:45 | 显示全部楼层 |阅读模式
书目名称Neural Information Processing
副标题27th International C
编辑Haiqin Yang,Kitsuchart Pasupa,Irwin King
视频videohttp://file.papertrans.cn/664/663618/663618.mp4
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Neural Information Processing; 27th International C Haiqin Yang,Kitsuchart Pasupa,Irwin King Conference proceedings 2020 Springer Nature Sw
描述.The three-volume set of LNCS 12532, 12533, and 12534 constitutes the proceedings of the 27th International Conference on Neural Information Processing, ICONIP 2020, held in Bangkok, Thailand, in November 2020. Due to COVID-19 pandemic the conference was held virtually..The 187 full papers presented were carefully reviewed and selected from 618 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The third volume, LNCS 12534, is organized in topical sections on biomedical information; neural data analysis; neural network models; recommender systems; time series analysis..
出版日期Conference proceedings 2020
关键词artificial intelligence; computer networks; theory of computation; design and analysis of algorithms; ma
版次1
doihttps://doi.org/10.1007/978-3-030-63836-8
isbn_softcover978-3-030-63835-1
isbn_ebook978-3-030-63836-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Neural Information Processing影响因子(影响力)




书目名称Neural Information Processing影响因子(影响力)学科排名




书目名称Neural Information Processing网络公开度




书目名称Neural Information Processing网络公开度学科排名




书目名称Neural Information Processing被引频次




书目名称Neural Information Processing被引频次学科排名




书目名称Neural Information Processing年度引用




书目名称Neural Information Processing年度引用学科排名




书目名称Neural Information Processing读者反馈




书目名称Neural Information Processing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:03:39 | 显示全部楼层
Data Mining ENCODE Data Predicts a Significant Role of SINA3 in Human Liver Canceron we compared histone modification between HepG2 and HepG2.2.15 cells (HepG2 derived hepatitis B virus (HBV) expressing stable cells) and observed an increase SIN3A enrichment in promoter regions (H3K4me3) confirming a known biological phenotype. The mechanistic role of SIN3A protein in case of liv
发表于 2025-3-22 03:52:22 | 显示全部楼层
Enhancer-DSNet: A Supervisedly Prepared Enriched Sequence Representation for the Identification of Er-DSNet methodology is evaluated on a publicly available benchmark dataset and independent test set. Experimental results over benchmark independent test set indicate that proposed Enhancer-DSNet methodology outshines the performance of most recent predictor by the figure of 2%, 1%, 2%, and 5% in te
发表于 2025-3-22 05:05:37 | 显示全部楼层
发表于 2025-3-22 12:29:27 | 显示全部楼层
发表于 2025-3-22 16:20:03 | 显示全部楼层
发表于 2025-3-22 19:38:14 | 显示全部楼层
Phase Synchronization Indices for Classification of Action Intention Understanding Based on EEG Signuency band. We conclude that the phase synchronization indices are extremely useful for the classification task, the sum of significant edge values is an effective classification feature, and the action intention understanding closely correlates with the alpha frequency band.
发表于 2025-3-22 23:55:00 | 显示全部楼层
Are Deep Neural Architectures Losing Information? Invertibility is Indispensableoration tasks: image denoising, JPEG image decompression and image inpainting. Experimental results show that IRAE consistently outperforms non-invertible ones. Our model even contains far fewer parameters. Thus, it may be worthwhile to try replacing standard components of deep neural architectures
发表于 2025-3-23 03:17:15 | 显示全部楼层
发表于 2025-3-23 07:23:05 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-22 20:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表