找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 24th International C Derong Liu,Shengli Xie,El-Sayed M. El-Alfy Conference proceedings 2017 Springer Interna

[复制链接]
查看: 50840|回复: 58
发表于 2025-3-21 17:00:59 | 显示全部楼层 |阅读模式
书目名称Neural Information Processing
副标题24th International C
编辑Derong Liu,Shengli Xie,El-Sayed M. El-Alfy
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Neural Information Processing; 24th International C Derong Liu,Shengli Xie,El-Sayed M. El-Alfy Conference proceedings 2017 Springer Interna
描述The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constitues the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563  full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on Machine Learning, Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing. .
出版日期Conference proceedings 2017
关键词Adaptive dynamic programming; Artificial intelligence; Biologically inspired computing; Brain-computer
版次1
doihttps://doi.org/10.1007/978-3-319-70139-4
isbn_softcover978-3-319-70138-7
isbn_ebook978-3-319-70139-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Neural Information Processing影响因子(影响力)




书目名称Neural Information Processing影响因子(影响力)学科排名




书目名称Neural Information Processing网络公开度




书目名称Neural Information Processing网络公开度学科排名




书目名称Neural Information Processing被引频次




书目名称Neural Information Processing被引频次学科排名




书目名称Neural Information Processing年度引用




书目名称Neural Information Processing年度引用学科排名




书目名称Neural Information Processing读者反馈




书目名称Neural Information Processing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:54:00 | 显示全部楼层
发表于 2025-3-22 02:30:32 | 显示全部楼层
Modeling Server Workloads for Campus Email Traffic Using Recurrent Neural Networksestigate the use of a Recurrent Neural Network (RNN) as time series modeling to model the server workload, which is a first for such a problem. Our results show that the use of RNN modeling leads in most cases to high modeling accuracy for all four campus email traffic datasets.
发表于 2025-3-22 05:39:27 | 显示全部楼层
Accelerated Matrix Factorisation Method for Fuzzy Clustering also propose an efficient method to solve the proximal mapping problem when implementing nmAPG. Finally, the experiment results on synthetic and real-world datasets show the performances and feasibility of our method.
发表于 2025-3-22 12:09:30 | 显示全部楼层
Mining Mobile Phone Base Station Data Based on Clustering Algorithms with Application to Public Trafodeling results of (1). Experimental results show that our model based on DBSCAN and GMM can effectively mine the significance of historical data of mobile phone base station and can successfully be applied to real-world problems like public traffic route design.
发表于 2025-3-22 15:48:40 | 显示全部楼层
A Hybrid Method of Sine Cosine Algorithm and Differential Evolution for Feature Selection which helps the SCA to skip the local point. The proposed method is compared with other three algorithms to select the subset of features used eight UCI datasets. The experiments results showed that the proposed method provided better results than other methods in terms of performance measures and statistical test.
发表于 2025-3-22 17:08:30 | 显示全部楼层
发表于 2025-3-23 00:48:14 | 显示全部楼层
发表于 2025-3-23 03:14:39 | 显示全部楼层
Incremental Matrix Reordering for Similarity-Based Dynamic Data Setspose an original algorithm for the incremental reordering of a similarity matrix adapted to dynamic data sets. The proposed method is compared with state-of-the-art algorithms for static data-sets and applied to a dynamic data-set in order to demonstrate its efficiency.
发表于 2025-3-23 07:55:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 20:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表