找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 26th International C Tom Gedeon,Kok Wai Wong,Minho Lee Conference proceedings 2019 Springer Nature Switzerla

[复制链接]
楼主: 女孩
发表于 2025-3-27 00:46:08 | 显示全部楼层
发表于 2025-3-27 03:05:01 | 显示全部楼层
Learning an Adversarial Network for Speech Enhancement Under Extremely Low Signal-to-Noise Ratio Conm mapping problem that converts the noisy speech spectrogram to the clean speech spectrogram. On such basis, we propose a robust speech enhancement approach based on deep adversarial learning for extremely low SNR Condition. The deep adversarial network is trained on a few paired spectrograms of the
发表于 2025-3-27 08:29:11 | 显示全部楼层
发表于 2025-3-27 10:17:10 | 显示全部楼层
发表于 2025-3-27 17:08:27 | 显示全部楼层
发表于 2025-3-27 21:20:47 | 显示全部楼层
DasNet: Dynamic Adaptive Structure for Accelerating Multi-task Convolutional Neural Networklarge common network, deploying multi-task learning on resource constrained devices is a challenging task. To guarantee overall accuracy with less computation, we introduce DasNet, which (1) automatically searches the adaptive common network sub-structure for each task; (2) fine-tunes corresponding
发表于 2025-3-28 00:43:55 | 显示全部楼层
发表于 2025-3-28 02:13:42 | 显示全部楼层
发表于 2025-3-28 06:48:00 | 显示全部楼层
Self-Adaptive Network Pruningn many industrial scenarios. In this paper, we propose to reduce such cost for CNNs through a self-adaptive network pruning method (.). Our method introduces a general Saliency-and-Pruning Module (SPM) for each convolutional layer, which learns to predict saliency scores and applies pruning for each
发表于 2025-3-28 11:32:17 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 09:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表