找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[复制链接]
查看: 52730|回复: 59
发表于 2025-3-21 19:15:34 | 显示全部楼层 |阅读模式
书目名称Neural Information Processing
副标题30th International C
编辑Biao Luo,Long Cheng,Chaojie Li
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable
描述The nine-volume set constitutes the refereed proceedings of the 30th International Conference on Neural Information Processing, ICONIP 2023, held in Changsha, China, in November 2023.  .The 1274 papers presented in the proceedings set were carefully reviewed and selected from 652 submissions. .The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements..
出版日期Conference proceedings 2024
关键词Affective and cognitive learning; Big data; Bioinformatics; Brain-machine interface; Computational finan
版次1
doihttps://doi.org/10.1007/978-981-99-8178-6
isbn_softcover978-981-99-8177-9
isbn_ebook978-981-99-8178-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Neural Information Processing影响因子(影响力)




书目名称Neural Information Processing影响因子(影响力)学科排名




书目名称Neural Information Processing网络公开度




书目名称Neural Information Processing网络公开度学科排名




书目名称Neural Information Processing被引频次




书目名称Neural Information Processing被引频次学科排名




书目名称Neural Information Processing年度引用




书目名称Neural Information Processing年度引用学科排名




书目名称Neural Information Processing读者反馈




书目名称Neural Information Processing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:17:31 | 显示全部楼层
Neuron Attribution-Based Attacks Fooling Object Detectors examples. Since our attack disturbs the upstream feature outputs, it effectively disorders the outputs of downstream tasks, such as box regression and classification, and finally fool the detector. Extensive experiments on PASCAL VOC and COCO dataset demonstrate that our method achieves better transferability compared to the state-of-the-arts.
发表于 2025-3-22 02:44:26 | 显示全部楼层
发表于 2025-3-22 07:22:23 | 显示全部楼层
Conference proceedings 2024CONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements..
发表于 2025-3-22 11:22:27 | 显示全部楼层
发表于 2025-3-22 14:32:44 | 显示全部楼层
发表于 2025-3-22 19:44:49 | 显示全部楼层
发表于 2025-3-22 23:20:19 | 显示全部楼层
Improve Conversational Search with Multi-document Informationeed to be retrieved based on the conversation history to respond to the user. However, existing approaches still make it difficult to distinguish irrelevant information from the user’s question at the semantic level. When a conversation involves multiple documents, it sometimes affects the retrieval
发表于 2025-3-23 04:34:15 | 显示全部楼层
Recurrent Update Representation Based on Multi-head Attention Mechanism for Joint Entity and Relatioever, most of the existing work only considers the information of the context in the sentence and the information of the entities, with little attention to the information of the possible relations between the entities, which may lead to the failure to extract valid triplets. In this paper, we propo
发表于 2025-3-23 09:33:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 04:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表