找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Connectomics Challenge; Demian Battaglia,Isabelle Guyon,Jordi Soriano Book 2017 Springer International Publishing AG 2017 Neuronal

[复制链接]
查看: 34001|回复: 46
发表于 2025-3-21 16:24:46 | 显示全部楼层 |阅读模式
书目名称Neural Connectomics Challenge
编辑Demian Battaglia,Isabelle Guyon,Jordi Soriano
视频video
概述Explains how machine learning tools have the capacity to predict the behavior or response of a complex system.Offers tools for the advancement of neuroscience through machine learning techniques.Combi
丛书名称The Springer Series on Challenges in Machine Learning
图书封面Titlebook: Neural Connectomics Challenge;  Demian Battaglia,Isabelle Guyon,Jordi Soriano Book 2017 Springer International Publishing AG 2017 Neuronal
描述This book illustrates the thrust of the scientific community to use machine learning concepts for tackling a complex problem: given time series of neuronal spontaneous activity, which is the underlying connectivity between the neurons in the network? The contributing authors also develop tools for the advancement of neuroscience through machine learning techniques, with a focus on the major open problems in neuroscience..While the techniques have been developed for a specific application, they address the more general problem of network reconstruction from observational time series, a problem of interest in a wide variety of domains, including econometrics, epidemiology, and climatology, to cite only a few..< .The book is designed for the mathematics, physics and computer science communities that carry out research in neuroscience problems. The content is also suitable for the machine learning community because it exemplifies how to approach the same problem from different perspectives..
出版日期Book 2017
关键词Neuronal networks; Effective connectivity; Neural imaging; Graph-theoretic measures; Pattern recognition
版次1
doihttps://doi.org/10.1007/978-3-319-53070-3
isbn_softcover978-3-319-85054-2
isbn_ebook978-3-319-53070-3Series ISSN 2520-131X Series E-ISSN 2520-1328
issn_series 2520-131X
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Neural Connectomics Challenge影响因子(影响力)




书目名称Neural Connectomics Challenge影响因子(影响力)学科排名




书目名称Neural Connectomics Challenge网络公开度




书目名称Neural Connectomics Challenge网络公开度学科排名




书目名称Neural Connectomics Challenge被引频次




书目名称Neural Connectomics Challenge被引频次学科排名




书目名称Neural Connectomics Challenge年度引用




书目名称Neural Connectomics Challenge年度引用学科排名




书目名称Neural Connectomics Challenge读者反馈




书目名称Neural Connectomics Challenge读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:13:37 | 显示全部楼层
发表于 2025-3-22 04:05:56 | 显示全部楼层
Simple Connectome Inference from Partial Correlation Statistics in Calcium Imaging,partial correlation statistics. This paper summarises the methodology that led us to win the Connectomics Challenge, proposes a simplified version of our method, and finally compares our results with respect to other inference methods.
发表于 2025-3-22 04:57:30 | 显示全部楼层
Reconstruction of Excitatory Neuronal Connectivity via Metric Score Pooling and Regularization,ve poor sensitivity. Akin to the ensemble learning approach, we then pool various measures to achieve cutting edge neuronal network connectomic reconstruction performance. As a final step emphasize the importance of introducing regularization schemes in the network reconstruction.
发表于 2025-3-22 11:52:22 | 显示全部楼层
发表于 2025-3-22 16:06:04 | 显示全部楼层
Supervised Neural Network Structure Recovery,ng pipeline optimized for a particular noise level and firing synchronization rate among neurons. We proved the suitability of our solution by improving the state of the art prediction performance more than . and by obtaining the third best score on the test dataset out of 144 teams.
发表于 2025-3-22 19:06:35 | 显示全部楼层
发表于 2025-3-22 22:58:42 | 显示全部楼层
发表于 2025-3-23 01:22:40 | 显示全部楼层
发表于 2025-3-23 07:22:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 16:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表