找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Network Inference in Molecular Biology; A Hands-on Framework Jesse M. Lingeman,Dennis Shasha Book 2012 The Author(s) 2012 Clustering.Gene R

[复制链接]
楼主: fundoplication
发表于 2025-3-25 03:23:59 | 显示全部楼层
Book 2012one tailored to a specific data situation..Network Inference in Molecular Biology. is intended for advanced-level students and researchers as a reference guide. Practitioners and professionals working in a related field will also find this book valuable..
发表于 2025-3-25 11:16:57 | 显示全部楼层
发表于 2025-3-25 14:04:55 | 显示全部楼层
Book 2012s. While researchers have developed techniques to find some of the underlying network structure, there is still no one-size-fits-all algorithm for every data set. .Network Inference in Molecular Biology. examines the current techniques used by researchers, and provides key insights into which algori
发表于 2025-3-25 16:52:35 | 显示全部楼层
发表于 2025-3-25 20:03:41 | 显示全部楼层
Clustering Data,ps even make certain relationships stronger!). For example, if there are two genes that both behave in exactly the same way across the experimental conditions of interest, then little to no information is lost if you treat them as though they were a single “gene”.
发表于 2025-3-26 03:03:28 | 显示全部楼层
Step 2: Use Steady State Data for Network Inference,re genes have been knocked out, overexpressed, or otherwise perturbed. If you know what happens to the network when a gene is missing or when it has been perturbed, it is easier to infer which genes it influences.
发表于 2025-3-26 08:21:18 | 显示全部楼层
Step 3: Using Time-Series Data,pes of algorithms will be presented in this section: mutual information, ordinary differential equations with l1 regularization, and dynamic Bayesian Networks. Each of these approaches makes different assumptions about the data.
发表于 2025-3-26 11:39:37 | 显示全部楼层
发表于 2025-3-26 14:01:49 | 显示全部楼层
SpringerBriefs in Electrical and Computer Engineeringhttp://image.papertrans.cn/n/image/662807.jpg
发表于 2025-3-26 17:46:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 02:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表