找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nearly Pseudo-Kähler Manifolds and Related Special Holonomies; Lars Schäfer Book 2017 Springer International Publishing AG 2017 Nearly Käh

[复制链接]
查看: 12783|回复: 35
发表于 2025-3-21 18:03:29 | 显示全部楼层 |阅读模式
书目名称Nearly Pseudo-Kähler Manifolds and Related Special Holonomies
编辑Lars Schäfer
视频video
概述Provides the first self-contained introduction to the field for non-experts, accessible to masters and Ph.D. students starting the subject.Helpful for researchers working in high energy physics who wa
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Nearly Pseudo-Kähler Manifolds and Related Special Holonomies;  Lars Schäfer Book 2017 Springer International Publishing AG 2017 Nearly Käh
描述.Developing and providing an overview of recent results on nearly Kähler geometry on pseudo-Riemannian manifolds, this monograph emphasizes the differences with the classical Riemannian geometry setting. The focal objects of the text are related to special holonomy and Killing spinors and have applications in high energy physics, such as supergravity and string theory. Before starting into the field, a self-contained introduction to the subject is given, aimed at students with a solid background in differential geometry. The book will therefore be accessible to masters and Ph.D. students who are beginning work on nearly Kähler geometry in pseudo-Riemannian signature, and also to non-experts interested in gaining an overview of the subject.  Moreover, a number of results and techniques are provided which will be helpful for differential geometers as well as for high energy physicists interested in the mathematical background of the geometric objects they need..
出版日期Book 2017
关键词Nearly Kähler Manifolds; Special Holonomy; Semi-Riemannian Metrics; Almost Complex Geometries; Twistor S
版次1
doihttps://doi.org/10.1007/978-3-319-65807-0
isbn_softcover978-3-319-65806-3
isbn_ebook978-3-319-65807-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Nearly Pseudo-Kähler Manifolds and Related Special Holonomies影响因子(影响力)




书目名称Nearly Pseudo-Kähler Manifolds and Related Special Holonomies影响因子(影响力)学科排名




书目名称Nearly Pseudo-Kähler Manifolds and Related Special Holonomies网络公开度




书目名称Nearly Pseudo-Kähler Manifolds and Related Special Holonomies网络公开度学科排名




书目名称Nearly Pseudo-Kähler Manifolds and Related Special Holonomies被引频次




书目名称Nearly Pseudo-Kähler Manifolds and Related Special Holonomies被引频次学科排名




书目名称Nearly Pseudo-Kähler Manifolds and Related Special Holonomies年度引用




书目名称Nearly Pseudo-Kähler Manifolds and Related Special Holonomies年度引用学科排名




书目名称Nearly Pseudo-Kähler Manifolds and Related Special Holonomies读者反馈




书目名称Nearly Pseudo-Kähler Manifolds and Related Special Holonomies读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:02:47 | 显示全部楼层
Nearly Pseudo-Kähler Manifolds and Related Special Holonomies978-3-319-65807-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-22 03:08:52 | 显示全部楼层
发表于 2025-3-22 05:56:02 | 显示全部楼层
发表于 2025-3-22 09:57:31 | 显示全部楼层
Lars SchäferProvides the first self-contained introduction to the field for non-experts, accessible to masters and Ph.D. students starting the subject.Helpful for researchers working in high energy physics who wa
发表于 2025-3-22 15:31:15 | 显示全部楼层
Preliminaries,In this section we collect some basic facts about stable forms, their orbits and their stabilisers.
发表于 2025-3-22 17:08:45 | 显示全部楼层
发表于 2025-3-22 22:31:54 | 显示全部楼层
发表于 2025-3-23 02:47:13 | 显示全部楼层
发表于 2025-3-23 06:23:03 | 显示全部楼层
Lars Schäfersubset, under the constraint that both coincide on the universal set? For normalized capacities, the problem amounts to finding probability measures dominating a given capacity, while in cooperative game theory, it amounts to the problem of sharing a cake so that no coalition of players is dissatisf
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 17:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表