找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nearly Integrable Infinite-Dimensional Hamiltonian Systems; Sergej B. Kuksin Book 1993 Springer-Verlag Berlin Heidelberg 1993 Hamiltonian

[复制链接]
查看: 26399|回复: 35
发表于 2025-3-21 19:38:58 | 显示全部楼层 |阅读模式
书目名称Nearly Integrable Infinite-Dimensional Hamiltonian Systems
编辑Sergej B. Kuksin
视频video
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Nearly Integrable Infinite-Dimensional Hamiltonian Systems;  Sergej B. Kuksin Book 1993 Springer-Verlag Berlin Heidelberg 1993 Hamiltonian
描述The book is devoted to partial differential equations ofHamiltonian form,close to integrable equations. For suchequations a KAM-like theorem is proved, stating thatsolutions of the unperturbed equation that are quasiperiodicin time mostly persist in the perturbed one. The theoremisapplied to classical nonlinear PDE‘s with one-dimensionalspacevariable such as the nonlinear string and nonlinearSchr|dinger equation andshow that the equations have"regular" (=time-quasiperiodic and time-periodic) solutionsin rich supply.These results cannot beobtained by other techniques. Thebook will thus be of interest tomathematicians andphysicists working with nonlinear PDE‘s.An extensivesummary of the results and of related topics isprovided in the Introduction. All the nontraditionalmaterial used is discussed in the firstpart of the book andin five appendices.
出版日期Book 1993
关键词Hamiltonian System; KAM-theory; differential equation; infinite-dimensional; integrable systems; partial
版次1
doihttps://doi.org/10.1007/BFb0092243
isbn_softcover978-3-540-57161-2
isbn_ebook978-3-540-47920-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1993
The information of publication is updating

书目名称Nearly Integrable Infinite-Dimensional Hamiltonian Systems影响因子(影响力)




书目名称Nearly Integrable Infinite-Dimensional Hamiltonian Systems影响因子(影响力)学科排名




书目名称Nearly Integrable Infinite-Dimensional Hamiltonian Systems网络公开度




书目名称Nearly Integrable Infinite-Dimensional Hamiltonian Systems网络公开度学科排名




书目名称Nearly Integrable Infinite-Dimensional Hamiltonian Systems被引频次




书目名称Nearly Integrable Infinite-Dimensional Hamiltonian Systems被引频次学科排名




书目名称Nearly Integrable Infinite-Dimensional Hamiltonian Systems年度引用




书目名称Nearly Integrable Infinite-Dimensional Hamiltonian Systems年度引用学科排名




书目名称Nearly Integrable Infinite-Dimensional Hamiltonian Systems读者反馈




书目名称Nearly Integrable Infinite-Dimensional Hamiltonian Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:16:56 | 显示全部楼层
https://doi.org/10.1007/BFb0092243Hamiltonian System; KAM-theory; differential equation; infinite-dimensional; integrable systems; partial
发表于 2025-3-22 02:45:43 | 显示全部楼层
978-3-540-57161-2Springer-Verlag Berlin Heidelberg 1993
发表于 2025-3-22 04:57:19 | 显示全部楼层
发表于 2025-3-22 09:20:22 | 显示全部楼层
improvement of the lives of people in thecommunity - as the lives are lived on a day-to-day basis.However, there has been a long tradition of such `OutreachScholarship‘ in America, and this focus is gaining renewed attention,at least in part, because policy makers and philanthropicorganizations are
发表于 2025-3-22 16:40:23 | 显示全部楼层
发表于 2025-3-22 20:41:38 | 显示全部楼层
Sergej B. Kuksinhine learning forecasting methods in contrast to traditional forecasting methods, specifically in the supermarkets and grocery stores industry. The main two goals of this research are to close a gap in research about the potential of machine learning forecasting methods and to inform retail professi
发表于 2025-3-23 00:09:28 | 显示全部楼层
发表于 2025-3-23 04:49:12 | 显示全部楼层
发表于 2025-3-23 08:20:38 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 20:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表