找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Navier–Stokes Equations on R3 × [0, T]; Frank Stenger,Don Tucker,Gerd Baumann Book 2016 Springer International Publishing AG 2016 Navier-S

[复制链接]
查看: 51993|回复: 38
发表于 2025-3-21 17:39:57 | 显示全部楼层 |阅读模式
书目名称Navier–Stokes Equations on R3 × [0, T]
编辑Frank Stenger,Don Tucker,Gerd Baumann
视频video
概述Studies the properties of solutions.of the Navier–Stokes partial differential equations on (x , y, z , t) ? R3 × [0, T].Demonstrates a new method for.determining solutions of the Navier–Stokes equatio
图书封面Titlebook: Navier–Stokes Equations on R3 × [0, T];  Frank Stenger,Don Tucker,Gerd Baumann Book 2016 Springer International Publishing AG 2016 Navier-S
描述.In this monograph, leading researchers in the world ofnumerical analysis, partial differential equations, and hard computationalproblems study the properties of solutions of the Navier–Stokes. .partial differential equations on (x, y, z,t) ∈ ℝ.3. × [0, .T.]. Initially converting the PDE to asystem of integral equations, the authors then describe spaces .A. of analytic functions that housesolutions of this equation, and show that these spaces of analytic functionsare dense in the spaces .S. of rapidlydecreasing and infinitely differentiable functions. This method benefits fromthe following advantages:. .The functions of S are nearly always conceptual rather than explicit. .Initial and boundary conditions of solutions of PDE are usually drawn from the applied sciences, and as such, they are nearly always piece-wise analytic, and in this case, the solutions have the same properties. .When methods ofapproximation are applied to functions of .A. they converge at an exponential rate, whereas methods of approximation applied to the functions of .S. converge only at a polynomial rate. .Enables sharper bounds on the solution enabling easier existence proofs, and a more accurate and more ef
出版日期Book 2016
关键词Navier-Stokes Equations; Numerical Methods for Solving Navier-Stokes Equations; Partial Differential E
版次1
doihttps://doi.org/10.1007/978-3-319-27526-0
isbn_softcover978-3-319-80162-9
isbn_ebook978-3-319-27526-0
copyrightSpringer International Publishing AG 2016
The information of publication is updating

书目名称Navier–Stokes Equations on R3 × [0, T]影响因子(影响力)




书目名称Navier–Stokes Equations on R3 × [0, T]影响因子(影响力)学科排名




书目名称Navier–Stokes Equations on R3 × [0, T]网络公开度




书目名称Navier–Stokes Equations on R3 × [0, T]网络公开度学科排名




书目名称Navier–Stokes Equations on R3 × [0, T]被引频次




书目名称Navier–Stokes Equations on R3 × [0, T]被引频次学科排名




书目名称Navier–Stokes Equations on R3 × [0, T]年度引用




书目名称Navier–Stokes Equations on R3 × [0, T]年度引用学科排名




书目名称Navier–Stokes Equations on R3 × [0, T]读者反馈




书目名称Navier–Stokes Equations on R3 × [0, T]读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:47:51 | 显示全部楼层
Introduction, PDE, and IE Formulations,In this chapter we first state the Navier–Stokes (N–S) problem as a system of nonlinear partial differential equations (PDE) along with initial conditions. We then convert this system of PDE to a system of integral equations (IE).
发表于 2025-3-22 04:00:54 | 显示全部楼层
Proof of Convergence of Iteration (1.25),We prove that if the initial vector .. belongs to the Banach space . defined in Definition ., then the iterative sequence of functions defined as in (.) converges to a unique solution for all . sufficiently small.
发表于 2025-3-22 05:17:23 | 显示全部楼层
发表于 2025-3-22 10:20:39 | 显示全部楼层
发表于 2025-3-22 14:14:56 | 显示全部楼层
发表于 2025-3-22 21:02:13 | 显示全部楼层
发表于 2025-3-23 01:07:29 | 显示全部楼层
发表于 2025-3-23 01:57:53 | 显示全部楼层
Book 2016operties of solutions of the Navier–Stokes. .partial differential equations on (x, y, z,t) ∈ ℝ.3. × [0, .T.]. Initially converting the PDE to asystem of integral equations, the authors then describe spaces .A. of analytic functions that housesolutions of this equation, and show that these spaces of
发表于 2025-3-23 05:33:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 14:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表