书目名称 | Navier–Stokes Equations on R3 × [0, T] | 编辑 | Frank Stenger,Don Tucker,Gerd Baumann | 视频video | | 概述 | Studies the properties of solutions.of the Navier–Stokes partial differential equations on (x , y, z , t) ? R3 × [0, T].Demonstrates a new method for.determining solutions of the Navier–Stokes equatio | 图书封面 | ![Titlebook: Navier–Stokes Equations on R3 × [0, T]; Frank Stenger,Don Tucker,Gerd Baumann Book 2016 Springer International Publishing AG 2016 Navier-S Titlebook: Navier–Stokes Equations on R3 × [0, T]; Frank Stenger,Don Tucker,Gerd Baumann Book 2016 Springer International Publishing AG 2016 Navier-S](http://image.papertrans.cn/n/image/662191.jpg) | 描述 | .In this monograph, leading researchers in the world ofnumerical analysis, partial differential equations, and hard computationalproblems study the properties of solutions of the Navier–Stokes. .partial differential equations on (x, y, z,t) ∈ ℝ.3. × [0, .T.]. Initially converting the PDE to asystem of integral equations, the authors then describe spaces .A. of analytic functions that housesolutions of this equation, and show that these spaces of analytic functionsare dense in the spaces .S. of rapidlydecreasing and infinitely differentiable functions. This method benefits fromthe following advantages:. .The functions of S are nearly always conceptual rather than explicit. .Initial and boundary conditions of solutions of PDE are usually drawn from the applied sciences, and as such, they are nearly always piece-wise analytic, and in this case, the solutions have the same properties. .When methods ofapproximation are applied to functions of .A. they converge at an exponential rate, whereas methods of approximation applied to the functions of .S. converge only at a polynomial rate. .Enables sharper bounds on the solution enabling easier existence proofs, and a more accurate and more ef | 出版日期 | Book 2016 | 关键词 | Navier-Stokes Equations; Numerical Methods for Solving Navier-Stokes Equations; Partial Differential E | 版次 | 1 | doi | https://doi.org/10.1007/978-3-319-27526-0 | isbn_softcover | 978-3-319-80162-9 | isbn_ebook | 978-3-319-27526-0 | copyright | Springer International Publishing AG 2016 |
The information of publication is updating
书目名称Navier–Stokes Equations on R3 × [0, T]影响因子(影响力) 
书目名称Navier–Stokes Equations on R3 × [0, T]影响因子(影响力)学科排名 
书目名称Navier–Stokes Equations on R3 × [0, T]网络公开度 
书目名称Navier–Stokes Equations on R3 × [0, T]网络公开度学科排名 
书目名称Navier–Stokes Equations on R3 × [0, T]被引频次 
书目名称Navier–Stokes Equations on R3 × [0, T]被引频次学科排名 
书目名称Navier–Stokes Equations on R3 × [0, T]年度引用 
书目名称Navier–Stokes Equations on R3 × [0, T]年度引用学科排名 
书目名称Navier–Stokes Equations on R3 × [0, T]读者反馈 
书目名称Navier–Stokes Equations on R3 × [0, T]读者反馈学科排名 
|
|
|