用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nature Inspired Cooperative Strategies for Optimization (NICSO 2008); Natalio Krasnogor,María Belén Melián-Batista,David Book 2009 Springe

[复制链接]
查看: 39848|回复: 58
发表于 2025-3-21 18:08:36 | 显示全部楼层 |阅读模式
书目名称Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)
编辑Natalio Krasnogor,María Belén Melián-Batista,David
视频video
概述Presents latest results in nature inspired cooperative strategies for optimization
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Nature Inspired Cooperative Strategies for Optimization (NICSO 2008);  Natalio Krasnogor,María Belén Melián-Batista,David Book 2009 Springe
描述The inspiration from Biology and the Natural Evolution process has become a research area within computer science. For instance, the description of the arti?cial neuron given by McCulloch and Pitts was inspired from biological observations of neural mechanisms; the power of evolution in nature in the diverse species that make up our world has been related to a particular form of problem solving based on the idea of survival of the ?ttest; similarly, - ti?cial immune systems, ant colony optimisation, automated self-assembling programming, membrane computing, etc. also have their roots in natural phenomena. The ?rst and second editions of the International Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO), were held in Granada, Spain, 2006, and in Acireale, Italy, 2007, respectively. As in these two previous editions, the aim of NICSO 2008, held in Tenerife, Spain, was to provide a forum were the latest ideas and state of the art research related to nature inspired cooperative strategies for problem solving were discussed. The contributions collected in this book were strictly peer reviewed by at least three members of the international programme committee,
出版日期Book 2009
关键词Cyc; algorithms; communication; evolution; evolutionary algorithm; genetic algorithm; genetic algorithms; m
版次1
doihttps://doi.org/10.1007/978-3-642-03211-0
isbn_softcover978-3-642-26034-6
isbn_ebook978-3-642-03211-0Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

书目名称Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)影响因子(影响力)




书目名称Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)影响因子(影响力)学科排名




书目名称Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)网络公开度




书目名称Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)网络公开度学科排名




书目名称Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)被引频次




书目名称Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)被引频次学科排名




书目名称Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)年度引用




书目名称Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)年度引用学科排名




书目名称Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)读者反馈




书目名称Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:18:09 | 显示全部楼层
Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)978-3-642-03211-0Series ISSN 1860-949X Series E-ISSN 1860-9503
发表于 2025-3-22 01:06:03 | 显示全部楼层
发表于 2025-3-22 06:25:46 | 显示全部楼层
https://doi.org/10.1007/978-3-642-03211-0Cyc; algorithms; communication; evolution; evolutionary algorithm; genetic algorithm; genetic algorithms; m
发表于 2025-3-22 09:10:40 | 显示全部楼层
发表于 2025-3-22 16:24:49 | 显示全部楼层
发表于 2025-3-22 17:44:31 | 显示全部楼层
Aerodynamic Wing Optimisation Using SOMA Evolutionary Algorithm,ed. We present a modern, high performance global optimisation algorithm, following with real engineering application results represented by set of evolutionary-designed wings which we developed in cooperation with a leading civil aircraft design bureau and manufacturer.
发表于 2025-3-22 21:42:00 | 显示全部楼层
发表于 2025-3-23 02:20:52 | 显示全部楼层
Discrete Particle Swarm Optimization Algorithm for Data Clustering,th the published results of Basic PSO (B-PSO) algorithm, Genetic Algorithm (GA), Differential Evolution (DE) algorithm and Combinatorial Particle Swarm Optimization (CPSO) algorithm. The performance analysis demonstrates the effectiveness of the proposed algorithm in solving the partitional data clustering problems.
发表于 2025-3-23 06:10:37 | 显示全部楼层
A Simple Distributed Particle Swarm Optimization for Dynamic and Noisy Environments, features as well as provides the optimum result tracking capability in dynamic environments. In this research, the DF1 multimodal dynamic environment generator proposed by Morrison and De Jong is used to evaluate the classic PSO, SDPSO and other two adaptive PSOs.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-7 10:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表