找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Natural Scientific Language Processing and Research Knowledge Graphs; First International Georg Rehm,Stefan Dietze,Frank Krüger Conference

[复制链接]
楼主: Weber-test
发表于 2025-3-28 15:11:59 | 显示全部楼层
RTaC: A Generalized Framework for Toolinging intricate tool sequencing with conditional and iterative logic. This research not only sets a new benchmark for tooling efficiency in LLMs but also opens new avenues for the application of LLMs in complex problem-solving scenarios, heralding a significant leap forward in the functionality and versatility of LLMs across diverse domains.
发表于 2025-3-28 19:49:23 | 显示全部楼层
发表于 2025-3-29 02:42:20 | 显示全部楼层
The Effect of Knowledge Graph Schema on Classifying Future Research Suggestionsves state of the art performance when combined with pretrained embeddings. Overall, we observe that schemas with limited variation in the resulting node degrees and significant interconnectedness lead to the best downstream classification performance.
发表于 2025-3-29 03:51:44 | 显示全部楼层
发表于 2025-3-29 09:05:13 | 显示全部楼层
发表于 2025-3-29 14:39:03 | 显示全部楼层
发表于 2025-3-29 19:25:29 | 显示全部楼层
发表于 2025-3-29 23:03:08 | 显示全部楼层
OCR Cleaning of Scientific Texts with LLMs develop Large Language Models specially finetuned to correct OCR errors. We experimented with the mT5 model (both the mT5-small and mT5-large configurations), a Text-to-Text Transfer Transformer-based machine translation model, for the post-correction of texts with OCR errors. We compiled a paralle
发表于 2025-3-30 01:33:47 | 显示全部楼层
RTaC: A Generalized Framework for Toolinghe dynamic selection and sequencing of tools in response to complex queries. Addressing this, we introduce Reimagining Tooling as Coding (RTaC), a groundbreaking framework that transforms tool usage into a coding paradigm. Inspired by recent advancements [.], RTaC conceptualizes tools as Python func
发表于 2025-3-30 06:01:48 | 显示全部楼层
Scientific Software Citation Intent Classification Using Large Language Modelshe introduction of new software systems. Despite its prevalence, there remains a significant gap in understanding how software is cited within the scientific literature. In this study, we offer a conceptual framework for studying software citation intent and explore the use of large language models,
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 13:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表