用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Natural Language Processing and Chinese Computing; Second CCF Conferenc Guodong Zhou,Juanzi Li,Yansong Feng Conference proceedings 2013 Spr

[复制链接]
楼主: 使固定
发表于 2025-3-28 16:27:18 | 显示全部楼层
Structure-Based Web Access Method for Ancient Chinese Characters knowledge about ancient Chinese characters. We also design a system suitable for describing the relationships between ancient Chinese characters and contemporary ones. As the implementation result, a website is established for public access to ancient Chinese characters.
发表于 2025-3-28 22:40:10 | 显示全部楼层
发表于 2025-3-28 23:51:25 | 显示全部楼层
Conference proceedings 2013omputing; machine learning for NLP; machine translation and multi-lingual information access; NLP for social media and web mining, knowledge acquisition; NLP for search technology and ads; NLP fundamentals; NLP applications; NLP for social media.
发表于 2025-3-29 04:13:32 | 显示全部楼层
发表于 2025-3-29 11:01:34 | 显示全部楼层
Text Window Denoising Autoencoder: Building Deep Architecture for Chinese Word Segmentationo various Chinese natural language processing tasks, such as Chinese word segmentation. On the PKU dataset of Chinese word segmentation bakeoff 2005, applying this method decreases the F1 error rate by 11.9% for deep neural network based models. We are the first to apply deep learning methods to Chinese word segmentation to our best knowledge.
发表于 2025-3-29 12:33:49 | 显示全部楼层
发表于 2025-3-29 18:36:50 | 显示全部楼层
Chinese Negation and Speculation Detection with Conditional Random Fieldsperimental results show that the single-word feature and the part of speech feature are effective, and the combined features improve the performance furthest. Our Chinese negation and speculation detection system in sentence level achieves 94.70% and 87.10% of accuracy, respectively.
发表于 2025-3-29 22:08:54 | 显示全部楼层
发表于 2025-3-30 02:05:39 | 显示全部楼层
发表于 2025-3-30 06:02:53 | 显示全部楼层
Incorporating Entities in News Topic Modelingpics by taking entity topic as a mixture of word topics. Experiments on real news data sets show our model of a lower perplexity and better in clustering of entities than state-of-the-art entity topic model(CorrLDA2). We also present analysis for results of ECTM and further compare it with CorrLDA2.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 21:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表