找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Natural Language Processing Recipes; Unlocking Text Data Akshay Kulkarni,Adarsha Shivananda Book 2021Latest edition Akshay Kulkarni and Ad

[复制链接]
查看: 21013|回复: 40
发表于 2025-3-21 17:49:49 | 显示全部楼层 |阅读模式
书目名称Natural Language Processing Recipes
副标题Unlocking Text Data
编辑Akshay Kulkarni,Adarsha Shivananda
视频video
概述Explains NLP concepts with simple programming recipes and implementation in Python.Teaches NLP life cycle end-to-end implementation pipeline: leverage state-of-the-art techniques and tools.Covers the
图书封面Titlebook: Natural Language Processing Recipes; Unlocking Text Data  Akshay Kulkarni,Adarsha Shivananda Book 2021Latest edition Akshay Kulkarni and Ad
描述Focus on implementing end-to-end projects using Python and leverage state-of-the-art algorithms. This book teaches you to efficiently use a wide range of natural language processing (NLP) packages to: implement text classification, identify parts of speech, utilize topic modeling, text summarization, sentiment analysis, information retrieval, and many more applications of NLP. .The book begins with text data collection, web scraping, and the different types of data sources. It explains how to clean and pre-process text data, and offers ways to analyze data with advanced algorithms. You then explore semantic and syntactic analysis of the text. Complex NLP solutions that involve text normalization are covered along with advanced pre-processing methods, POS tagging, parsing, text summarization, sentiment analysis, word2vec, seq2seq, and much more. The book presents the fundamentals necessary for applications of machine learning and deep learning in NLP. This second edition goes over advanced techniques to convert text to features such as Glove, Elmo, Bert, etc. It also includes an understanding of how transformers work, taking sentence BERT and GPT as examples. The final chapters expl
出版日期Book 2021Latest edition
关键词Natural language processing; Text analytics; NLP using python; Machine learning; Deep Learning; Python; Un
版次2
doihttps://doi.org/10.1007/978-1-4842-7351-7
isbn_softcover978-1-4842-7350-0
isbn_ebook978-1-4842-7351-7
copyrightAkshay Kulkarni and Adarsha Shivananda 2021
The information of publication is updating

书目名称Natural Language Processing Recipes影响因子(影响力)




书目名称Natural Language Processing Recipes影响因子(影响力)学科排名




书目名称Natural Language Processing Recipes网络公开度




书目名称Natural Language Processing Recipes网络公开度学科排名




书目名称Natural Language Processing Recipes被引频次




书目名称Natural Language Processing Recipes被引频次学科排名




书目名称Natural Language Processing Recipes年度引用




书目名称Natural Language Processing Recipes年度引用学科排名




书目名称Natural Language Processing Recipes读者反馈




书目名称Natural Language Processing Recipes读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:58:55 | 显示全部楼层
发表于 2025-3-22 03:36:38 | 显示全部楼层
http://image.papertrans.cn/n/image/661799.jpg
发表于 2025-3-22 04:47:13 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-7351-7Natural language processing; Text analytics; NLP using python; Machine learning; Deep Learning; Python; Un
发表于 2025-3-22 10:18:57 | 显示全部楼层
Akshay Kulkarni,Adarsha ShivanandaExplains NLP concepts with simple programming recipes and implementation in Python.Teaches NLP life cycle end-to-end implementation pipeline: leverage state-of-the-art techniques and tools.Covers the
发表于 2025-3-22 14:14:53 | 显示全部楼层
Extracting the Data,This chapter covers various sources of text data and the ways to extract it. Textual data can act as information or insights for businesses. The following recipes are covered.
发表于 2025-3-22 18:34:56 | 显示全部楼层
Exploring and Processing Text Data,This chapter discusses various methods and techniques to preprocess textual data and exploratory data analysis. It covers the following recipes.
发表于 2025-3-22 23:06:45 | 显示全部楼层
发表于 2025-3-23 02:25:43 | 显示全部楼层
发表于 2025-3-23 06:27:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-2 08:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表