找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Natural Language Generation; Third International Anja Belz,Roger Evans,Paul Piwek Conference proceedings 2004 Springer-Verlag Berlin Heide

[复制链接]
查看: 44478|回复: 62
发表于 2025-3-21 17:46:26 | 显示全部楼层 |阅读模式
书目名称Natural Language Generation
副标题Third International
编辑Anja Belz,Roger Evans,Paul Piwek
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Natural Language Generation; Third International  Anja Belz,Roger Evans,Paul Piwek Conference proceedings 2004 Springer-Verlag Berlin Heide
描述The Third International Conference on Natural Language Generation (INLG 2004) was held from 14th to 16th July 2004 at Careys Manor, Brockenhurst, UK. Supported by the Association for Computational Linguistics Special - terest Group on Generation, the conference continued a twenty-year tradition of biennial international meetings on research into natural language generation. Recent conference venues have included Mitzpe Ramon, Israel (INLG 2000) and New York, USA (INLG 2002). It was our pleasure to invite the thriving and friendly NLG research community to the beautiful New Forest in the south of England for INLG 2004. INLG is the leading international conference in the ?eld of natural language generation. It provides a forum for the presentation and discussion of original research on all aspects of the generation of language, including psychological modelling of human language production as well as computational approaches to the automatic generation of language. This volume includes apaper by the keynote speaker, Ardi Roelofs of the Max Planck Institute for Psycholingu- tics and the F. C. Donders Centre for CognitiveNeuroimaging,18 regular papers reportingthelatestresearchresultsa
出版日期Conference proceedings 2004
关键词automatic language generation; classification; computational linguistics; human language production; lea
版次1
doihttps://doi.org/10.1007/b98634
isbn_softcover978-3-540-22340-5
isbn_ebook978-3-540-27823-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

书目名称Natural Language Generation影响因子(影响力)




书目名称Natural Language Generation影响因子(影响力)学科排名




书目名称Natural Language Generation网络公开度




书目名称Natural Language Generation网络公开度学科排名




书目名称Natural Language Generation被引频次




书目名称Natural Language Generation被引频次学科排名




书目名称Natural Language Generation年度引用




书目名称Natural Language Generation年度引用学科排名




书目名称Natural Language Generation读者反馈




书目名称Natural Language Generation读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:04:24 | 显示全部楼层
发表于 2025-3-22 01:59:44 | 显示全部楼层
Context-Based Incremental Generation for Dialoguement and routinization result directly from minimisation of lexicon search (and hence speaker’s effort), and how switch of speaker/hearer roles in shared utterances can be seen as a switch between incremental processes directed by different goals, but sharing the same (partial) data structures.
发表于 2025-3-22 06:27:11 | 显示全部楼层
Contextual Influences on Near-Synonym Choicegests that when semantic differences do influence near-synonym choice, they may do so in an author-dependent manner. Thus, at least in our domain, ‘context’ (including author) seems to be more important than semantics when choosing between near-synonyms.
发表于 2025-3-22 12:46:54 | 显示全部楼层
Reining in CCG Chart Realization two test grammars, and show that the methods work best in combination. Our evaluation also indicates that despite the exponential worst-case complexity of the basic algorithm, the methods together can constrain the realization problem sufficiently to meet the interactive needs of natural language dialogue systems.
发表于 2025-3-22 14:55:15 | 显示全部楼层
发表于 2025-3-22 17:41:07 | 显示全部楼层
发表于 2025-3-23 00:26:27 | 显示全部楼层
The Use of a Structural N-gram Language Model in Generation-Heavy Hybrid Machine Translationinto account the overall structure at the phrase level. The model is used together with other components in the system for lexical and structural selection. An evaluation of the machine translation system shows that the use of structural N-grams decreases runtime by 60% with no loss in translation quality.
发表于 2025-3-23 04:59:38 | 显示全部楼层
发表于 2025-3-23 05:31:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 15:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表