找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Multivariate Data Analysis on Matrix Manifolds; (with Manopt) Nickolay Trendafilov,Michele Gallo Textbook 2021 The Editor(s) (if applicable

[复制链接]
查看: 31925|回复: 35
发表于 2025-3-21 19:55:31 | 显示全部楼层 |阅读模式
书目名称Multivariate Data Analysis on Matrix Manifolds
副标题(with Manopt)
编辑Nickolay Trendafilov,Michele Gallo
视频video
概述Integrates multivariate data analysis with Riemannian geometry.Provides a unified treatment of several MDA techniques.Incorporates new tools and technology into current theory of MDA.Includes Manpot c
丛书名称Springer Series in the Data Sciences
图书封面Titlebook: Multivariate Data Analysis on Matrix Manifolds; (with Manopt) Nickolay Trendafilov,Michele Gallo Textbook 2021 The Editor(s) (if applicable
描述This graduate-level textbook aims to give a unified presentation and solution of several commonly used techniques for multivariate data analysis (MDA). Unlike similar texts, it treats the MDA problems as optimization problems on matrix manifolds defined by the MDA model parameters, allowing them to be solved using (free) optimization software Manopt. The book includes numerous in-text examples as well as Manopt codes and software guides, which can be applied directly or used as templates for solving similar and new problems. The first two chapters provide an overview and essential background for studying MDA, giving basic information and notations. Next, it considers several sets of matrices routinely used in MDA as parameter spaces, along with their basic topological properties. A brief introduction to matrix (Riemannian) manifolds and optimization methods on them with Manopt complete the MDA prerequisite. The remaining chapters study individual MDA techniques in depth. The number ofexercises complement the main text with additional information and occasionally involve open and/or challenging research questions. Suitable fields include computational statistics, data analysis, data
出版日期Textbook 2021
关键词Multivariate Data Analysis; Matrix Manifolds; Data Science; Principal Component Analysis; Data matrix fa
版次1
doihttps://doi.org/10.1007/978-3-030-76974-1
isbn_softcover978-3-030-76976-5
isbn_ebook978-3-030-76974-1Series ISSN 2365-5674 Series E-ISSN 2365-5682
issn_series 2365-5674
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Multivariate Data Analysis on Matrix Manifolds影响因子(影响力)




书目名称Multivariate Data Analysis on Matrix Manifolds影响因子(影响力)学科排名




书目名称Multivariate Data Analysis on Matrix Manifolds网络公开度




书目名称Multivariate Data Analysis on Matrix Manifolds网络公开度学科排名




书目名称Multivariate Data Analysis on Matrix Manifolds被引频次




书目名称Multivariate Data Analysis on Matrix Manifolds被引频次学科排名




书目名称Multivariate Data Analysis on Matrix Manifolds年度引用




书目名称Multivariate Data Analysis on Matrix Manifolds年度引用学科排名




书目名称Multivariate Data Analysis on Matrix Manifolds读者反馈




书目名称Multivariate Data Analysis on Matrix Manifolds读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:26:40 | 显示全部楼层
发表于 2025-3-22 00:33:32 | 显示全部楼层
发表于 2025-3-22 06:06:57 | 显示全部楼层
发表于 2025-3-22 12:22:11 | 显示全部楼层
发表于 2025-3-22 13:22:17 | 显示全部楼层
2365-5674 and technology into current theory of MDA.Includes Manpot cThis graduate-level textbook aims to give a unified presentation and solution of several commonly used techniques for multivariate data analysis (MDA). Unlike similar texts, it treats the MDA problems as optimization problems on matrix mani
发表于 2025-3-22 17:28:50 | 显示全部楼层
发表于 2025-3-22 21:17:50 | 显示全部楼层
发表于 2025-3-23 01:27:48 | 显示全部楼层
2365-5674 number ofexercises complement the main text with additional information and occasionally involve open and/or challenging research questions. Suitable fields include computational statistics, data analysis, data978-3-030-76976-5978-3-030-76974-1Series ISSN 2365-5674 Series E-ISSN 2365-5682
发表于 2025-3-23 08:55:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 05:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表