找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Multivariate Birkhoff Interpolation; Rudolph A. Lorentz Book 1992 Springer-Verlag Berlin Heidelberg 1992 Hermite.Interpolation.approximati

[复制链接]
查看: 41315|回复: 35
发表于 2025-3-21 16:46:28 | 显示全部楼层 |阅读模式
书目名称Multivariate Birkhoff Interpolation
编辑Rudolph A. Lorentz
视频video
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Multivariate Birkhoff Interpolation;  Rudolph A. Lorentz Book 1992 Springer-Verlag Berlin Heidelberg 1992 Hermite.Interpolation.approximati
描述The subject of this book is Lagrange, Hermite and Birkhoff (lacunary Hermite) interpolation by multivariate algebraic polynomials. It unifies and extends a new algorithmic approach to this subject which was introduced and developed by G.G. Lorentz and the author. One particularly interesting feature of this algorithmic approach is that it obviates the necessity of finding a formula for the Vandermonde determinant of a multivariate interpolation in order to determine its regularity (which formulas are practically unknown anyways) by determining the regularity through simple geometric manipulations in the Euclidean space. Although interpolation is a classical problem, it is surprising how little is known about its basic properties in the multivariate case. The book therefore starts by exploring its fundamental properties and its limitations. The main part of the book is devoted to a complete and detailed elaboration of the new technique. A chapter with an extensive selection of finite elements follows as well as a chapter with formulas for Vandermonde determinants. Finally, the technique is applied to non-standard interpolations. The book is principally oriented to specialists in the
出版日期Book 1992
关键词Hermite; Interpolation; approximation theory; finite element method; multivariate; polynomial
版次1
doihttps://doi.org/10.1007/BFb0088788
isbn_softcover978-3-540-55870-5
isbn_ebook978-3-540-47300-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1992
The information of publication is updating

书目名称Multivariate Birkhoff Interpolation影响因子(影响力)




书目名称Multivariate Birkhoff Interpolation影响因子(影响力)学科排名




书目名称Multivariate Birkhoff Interpolation网络公开度




书目名称Multivariate Birkhoff Interpolation网络公开度学科排名




书目名称Multivariate Birkhoff Interpolation被引频次




书目名称Multivariate Birkhoff Interpolation被引频次学科排名




书目名称Multivariate Birkhoff Interpolation年度引用




书目名称Multivariate Birkhoff Interpolation年度引用学科排名




书目名称Multivariate Birkhoff Interpolation读者反馈




书目名称Multivariate Birkhoff Interpolation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:38:30 | 显示全部楼层
0075-8434 formulas for Vandermonde determinants. Finally, the technique is applied to non-standard interpolations. The book is principally oriented to specialists in the978-3-540-55870-5978-3-540-47300-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-22 00:38:50 | 显示全部楼层
Lecture Notes in Mathematicshttp://image.papertrans.cn/n/image/641292.jpg
发表于 2025-3-22 07:30:24 | 显示全部楼层
发表于 2025-3-22 12:04:26 | 显示全部楼层
978-3-540-55870-5Springer-Verlag Berlin Heidelberg 1992
发表于 2025-3-22 14:42:41 | 显示全部楼层
Multivariate Birkhoff Interpolation978-3-540-47300-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-22 18:11:01 | 显示全部楼层
Book 1992nds a new algorithmic approach to this subject which was introduced and developed by G.G. Lorentz and the author. One particularly interesting feature of this algorithmic approach is that it obviates the necessity of finding a formula for the Vandermonde determinant of a multivariate interpolation i
发表于 2025-3-22 23:22:50 | 显示全部楼层
0075-8434 s and extends a new algorithmic approach to this subject which was introduced and developed by G.G. Lorentz and the author. One particularly interesting feature of this algorithmic approach is that it obviates the necessity of finding a formula for the Vandermonde determinant of a multivariate inter
发表于 2025-3-23 04:27:02 | 显示全部楼层
发表于 2025-3-23 06:11:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 00:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表