找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Multiple Integrals; Walter Ledermann Book 1966 Walter Ledermann 1966 Area.Gauss’s Theorem.Green’s Theorem.Stokes’s Theorem.boundary elemen

[复制链接]
查看: 44792|回复: 35
发表于 2025-3-21 19:37:08 | 显示全部楼层 |阅读模式
书目名称Multiple Integrals
编辑Walter Ledermann
视频video
丛书名称Library of Mathematics
图书封面Titlebook: Multiple Integrals;  Walter Ledermann Book 1966 Walter Ledermann 1966 Area.Gauss’s Theorem.Green’s Theorem.Stokes’s Theorem.boundary elemen
描述The aim of this book is to give an elementary treatment of multiple integrals. The notions of integrals extended over a curve, a plane region, a surface and a solid are introduced in tum, and methods for evaluating these integrals are presented in detail. Especial reference is made to the results required in Physics and other mathematical sciences, in which multiple integrals are an indispensable tool. A full theoretical discussion of this topic would involve deep problems of analysis and topology, which are outside the scope of this volume, and concessions had to be made in respect of completeness without, it is hoped, impairing precision and a reasonable standard of rigour. As in the author‘s Integral Calculus (in this series), the main existence theorems are first explained informally and then stated exactly, but not proved. Topological difficulties are circumvented by imposing some­ what stringent, though no unrealistic, restrictions on the regions of integration. Numerous examples are worked out in the text, and each chapter is followed by a set of exercises. My thanks are due to my colleague Dr. S. Swierczkowski, who read the manuscript and made valuable suggestions. w. LEDER
出版日期Book 1966
关键词Area; Gauss’s Theorem; Green’s Theorem; Stokes’s Theorem; boundary element method; curvilinear integral; d
版次1
doihttps://doi.org/10.1007/978-94-011-6091-9
isbn_softcover978-0-7100-4358-0
isbn_ebook978-94-011-6091-9
copyrightWalter Ledermann 1966
The information of publication is updating

书目名称Multiple Integrals影响因子(影响力)




书目名称Multiple Integrals影响因子(影响力)学科排名




书目名称Multiple Integrals网络公开度




书目名称Multiple Integrals网络公开度学科排名




书目名称Multiple Integrals被引频次




书目名称Multiple Integrals被引频次学科排名




书目名称Multiple Integrals年度引用




书目名称Multiple Integrals年度引用学科排名




书目名称Multiple Integrals读者反馈




书目名称Multiple Integrals读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:33:35 | 显示全部楼层
发表于 2025-3-22 03:44:00 | 显示全部楼层
Book 1966ce and a solid are introduced in tum, and methods for evaluating these integrals are presented in detail. Especial reference is made to the results required in Physics and other mathematical sciences, in which multiple integrals are an indispensable tool. A full theoretical discussion of this topic
发表于 2025-3-22 06:50:12 | 显示全部楼层
n, a surface and a solid are introduced in tum, and methods for evaluating these integrals are presented in detail. Especial reference is made to the results required in Physics and other mathematical sciences, in which multiple integrals are an indispensable tool. A full theoretical discussion of t
发表于 2025-3-22 12:42:11 | 显示全部楼层
发表于 2025-3-22 15:24:57 | 显示全部楼层
发表于 2025-3-22 18:47:23 | 显示全部楼层
https://doi.org/10.1007/978-94-011-6091-9Area; Gauss’s Theorem; Green’s Theorem; Stokes’s Theorem; boundary element method; curvilinear integral; d
发表于 2025-3-22 22:25:13 | 显示全部楼层
8楼
发表于 2025-3-23 02:09:05 | 显示全部楼层
9楼
发表于 2025-3-23 06:05:19 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 17:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表