找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Multiple Instance Learning; Foundations and Algo Francisco Herrera,Sebastián Ventura,Sarah Vluymans Book 2016 Springer International Publis

[复制链接]
查看: 14653|回复: 35
发表于 2025-3-21 17:59:19 | 显示全部楼层 |阅读模式
书目名称Multiple Instance Learning
副标题Foundations and Algo
编辑Francisco Herrera,Sebastián Ventura,Sarah Vluymans
视频video
概述Offers a comprehensive overview of multiple instance learning widely used to classify and label texts, pictures, videos and music in the Internet.Provides the user with the most relevant algorithms fo
图书封面Titlebook: Multiple Instance Learning; Foundations and Algo Francisco Herrera,Sebastián Ventura,Sarah Vluymans Book 2016 Springer International Publis
描述This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms. The authors discuss the most important algorithms for MIL such as classification, regression and clustering. With a focus on classification, a taxonomy is set and the most relevant proposals are specified. Efficient algorithms are developed to discover relevant information when working with uncertainty. Key representative applications are included..This book carries out a study of the key related fields of distance metrics and alternative hypothesis. Chapters examine new and developing aspects of MIL such as data reduction for multi-instance problems and imbalanced MIL data. Class imbalance for multi-instance problems is defined at the bag level, a type of representation that utilizes ambiguity due to the fact that bag labels are available, but the labels of the individual instances are not defined..Additionally, multiple instance multiple label learning is explored. This learning framework introduces flexibility and ambiguity in the object representation providing a natural formulation for representing complicated objects. Thus, an object is represe
出版日期Book 2016
关键词Machine learning; Data mining; Multiple instance learning; Multiple instance classification; Multiple in
版次1
doihttps://doi.org/10.1007/978-3-319-47759-6
isbn_softcover978-3-319-83815-1
isbn_ebook978-3-319-47759-6
copyrightSpringer International Publishing AG 2016
The information of publication is updating

书目名称Multiple Instance Learning影响因子(影响力)




书目名称Multiple Instance Learning影响因子(影响力)学科排名




书目名称Multiple Instance Learning网络公开度




书目名称Multiple Instance Learning网络公开度学科排名




书目名称Multiple Instance Learning被引频次




书目名称Multiple Instance Learning被引频次学科排名




书目名称Multiple Instance Learning年度引用




书目名称Multiple Instance Learning年度引用学科排名




书目名称Multiple Instance Learning读者反馈




书目名称Multiple Instance Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:22:22 | 显示全部楼层
发表于 2025-3-22 02:30:56 | 显示全部楼层
发表于 2025-3-22 05:57:48 | 显示全部楼层
http://image.papertrans.cn/n/image/640988.jpg
发表于 2025-3-22 08:52:31 | 显示全部楼层
https://doi.org/10.1007/978-3-319-47759-6Machine learning; Data mining; Multiple instance learning; Multiple instance classification; Multiple in
发表于 2025-3-22 13:30:28 | 显示全部楼层
发表于 2025-3-22 20:56:24 | 显示全部楼层
l learning is explored. This learning framework introduces flexibility and ambiguity in the object representation providing a natural formulation for representing complicated objects. Thus, an object is represe978-3-319-83815-1978-3-319-47759-6
发表于 2025-3-22 23:08:28 | 显示全部楼层
发表于 2025-3-23 01:53:19 | 显示全部楼层
9楼
发表于 2025-3-23 09:34:56 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 08:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表