找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Multi-Objective Machine Learning; Yaochu Jin Book 2006 Springer-Verlag Berlin Heidelberg 2006 Support Vector Machine.decision tree.evoluti

[复制链接]
查看: 47616|回复: 35
发表于 2025-3-21 17:03:30 | 显示全部楼层 |阅读模式
书目名称Multi-Objective Machine Learning
编辑Yaochu Jin
视频video
概述Selected collection of recent research on multi-objective approach to machine learning.Recent developments in evolutionary multi-objective optimization.Applies the concept of Pareto-optimality to mach
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Multi-Objective Machine Learning;  Yaochu Jin Book 2006 Springer-Verlag Berlin Heidelberg 2006 Support Vector Machine.decision tree.evoluti
描述.Recently, increasing interest has been shown in applying the concept of Pareto-optimality to machine learning, particularly inspired by the successful developments in evolutionary multi-objective optimization. It has been shown that the multi-objective approach to machine learning is particularly successful to improve the performance of the traditional single objective machine learning methods, to generate highly diverse multiple Pareto-optimal models for constructing ensembles models and, and to achieve a desired trade-off between accuracy and interpretability of neural networks or fuzzy systems. This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems. .
出版日期Book 2006
关键词Support Vector Machine; decision tree; evolution; fuzzy; fuzzy system; fuzzy systems; genetic algorithms; i
版次1
doihttps://doi.org/10.1007/3-540-33019-4
isbn_softcover978-3-642-06796-9
isbn_ebook978-3-540-33019-6Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

书目名称Multi-Objective Machine Learning影响因子(影响力)




书目名称Multi-Objective Machine Learning影响因子(影响力)学科排名




书目名称Multi-Objective Machine Learning网络公开度




书目名称Multi-Objective Machine Learning网络公开度学科排名




书目名称Multi-Objective Machine Learning被引频次




书目名称Multi-Objective Machine Learning被引频次学科排名




书目名称Multi-Objective Machine Learning年度引用




书目名称Multi-Objective Machine Learning年度引用学科排名




书目名称Multi-Objective Machine Learning读者反馈




书目名称Multi-Objective Machine Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:36:26 | 显示全部楼层
发表于 2025-3-22 00:39:26 | 显示全部楼层
Book 2006l developments in evolutionary multi-objective optimization. It has been shown that the multi-objective approach to machine learning is particularly successful to improve the performance of the traditional single objective machine learning methods, to generate highly diverse multiple Pareto-optimal
发表于 2025-3-22 08:25:57 | 显示全部楼层
发表于 2025-3-22 12:03:57 | 显示全部楼层
发表于 2025-3-22 15:41:11 | 显示全部楼层
发表于 2025-3-22 21:08:38 | 显示全部楼层
发表于 2025-3-22 21:22:05 | 显示全部楼层
978-3-642-06796-9Springer-Verlag Berlin Heidelberg 2006
发表于 2025-3-23 04:01:27 | 显示全部楼层
发表于 2025-3-23 08:41:29 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 02:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表