找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases; Ashish Ghosh,Satchidananda Dehuri,Susmita Ghosh Book 20081

[复制链接]
查看: 36152|回复: 35
发表于 2025-3-21 17:24:25 | 显示全部楼层 |阅读模式
书目名称Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases
编辑Ashish Ghosh,Satchidananda Dehuri,Susmita Ghosh
视频video
概述Assembles high quality original contributions that reflect and advance the state-of-the art in the area of Multi-objective Evolutionary Algorithms for Data Mining and Knowledge Discovery.Emphasizes on
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases;  Ashish Ghosh,Satchidananda Dehuri,Susmita Ghosh Book 20081
描述.Data Mining (DM) is the most commonly used name to describe such computational analysis of data and the results obtained must conform to several objectives such as accuracy, comprehensibility, interest for the user etc. Though there are many sophisticated techniques developed by various interdisciplinary fields only a few of them are well equipped to handle these multi-criteria issues of DM. Therefore, the DM issues have attracted considerable attention of the well established multiobjective genetic algorithm community to optimize the objectives in the tasks of DM...The present volume provides a collection of seven articles containing new and high quality research results demonstrating the significance of Multi-objective Evolutionary Algorithms (MOEA) for data mining tasks in Knowledge Discovery from Databases (KDD). These articles are written by leading experts around the world. It is shown how the different MOEAs can be utilized, both in individual and integrated manner, in various ways to efficiently mine data from large databases..
出版日期Book 20081st edition
关键词Knowledge Discovery Form Databases; algorithm; algorithms; calculus; classification; clustering; data mini
版次1
doihttps://doi.org/10.1007/978-3-540-77467-9
isbn_softcover978-3-642-09615-0
isbn_ebook978-3-540-77467-9Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

书目名称Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases影响因子(影响力)




书目名称Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases影响因子(影响力)学科排名




书目名称Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases网络公开度




书目名称Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases网络公开度学科排名




书目名称Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases被引频次




书目名称Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases被引频次学科排名




书目名称Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases年度引用




书目名称Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases年度引用学科排名




书目名称Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases读者反馈




书目名称Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:32:12 | 显示全部楼层
发表于 2025-3-22 03:55:51 | 显示全部楼层
发表于 2025-3-22 07:20:54 | 显示全部楼层
Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases978-3-540-77467-9Series ISSN 1860-949X Series E-ISSN 1860-9503
发表于 2025-3-22 10:20:43 | 显示全部楼层
Studies in Computational Intelligencehttp://image.papertrans.cn/m/image/639985.jpg
发表于 2025-3-22 16:03:27 | 显示全部楼层
https://doi.org/10.1007/978-3-540-77467-9Knowledge Discovery Form Databases; algorithm; algorithms; calculus; classification; clustering; data mini
发表于 2025-3-22 18:14:41 | 显示全部楼层
发表于 2025-3-22 22:15:28 | 显示全部楼层
1860-949X cles are written by leading experts around the world. It is shown how the different MOEAs can be utilized, both in individual and integrated manner, in various ways to efficiently mine data from large databases..978-3-642-09615-0978-3-540-77467-9Series ISSN 1860-949X Series E-ISSN 1860-9503
发表于 2025-3-23 02:27:31 | 显示全部楼层
Book 20081st editionithms (MOEA) for data mining tasks in Knowledge Discovery from Databases (KDD). These articles are written by leading experts around the world. It is shown how the different MOEAs can be utilized, both in individual and integrated manner, in various ways to efficiently mine data from large databases..
发表于 2025-3-23 06:15:27 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 17:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表