找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Motivic Integration; Antoine Chambert-Loir,Johannes Nicaise,Julien Seba Book 2018 Springer Science+Business Media, LLC, part of Springer N

[复制链接]
查看: 8733|回复: 35
发表于 2025-3-21 19:42:31 | 显示全部楼层 |阅读模式
书目名称Motivic Integration
编辑Antoine Chambert-Loir,Johannes Nicaise,Julien Seba
视频video
概述Includes the first complete treatment of geometric motivic integration in a monograph.Covers the construction of arc schemes and Greenberg schemes.Provides a complete discussion of questions concernin
丛书名称Progress in Mathematics
图书封面Titlebook: Motivic Integration;  Antoine Chambert-Loir,Johannes Nicaise,Julien Seba Book 2018 Springer Science+Business Media, LLC, part of Springer N
描述This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ring of varieties, arc schemes, and Greenberg schemes. It then moves on to motivic integration and its applications to birational geometry and non-Archimedean geometry. Also included in the work is a prologue on p-adic analytic manifolds, which served as a model for motivic integration. .With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since. .
出版日期Book 2018
关键词Greenberg schemes; Grothendieck ring of varieties; arc spaces; birational invariants; p-adic integration
版次1
doihttps://doi.org/10.1007/978-1-4939-7887-8
isbn_softcover978-1-4939-9315-4
isbn_ebook978-1-4939-7887-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media, LLC, part of Springer Nature 2018
The information of publication is updating

书目名称Motivic Integration影响因子(影响力)




书目名称Motivic Integration影响因子(影响力)学科排名




书目名称Motivic Integration网络公开度




书目名称Motivic Integration网络公开度学科排名




书目名称Motivic Integration被引频次




书目名称Motivic Integration被引频次学科排名




书目名称Motivic Integration年度引用




书目名称Motivic Integration年度引用学科排名




书目名称Motivic Integration读者反馈




书目名称Motivic Integration读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:11:07 | 显示全部楼层
Motivic Integration978-1-4939-7887-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-22 01:39:02 | 显示全部楼层
发表于 2025-3-22 04:39:21 | 显示全部楼层
发表于 2025-3-22 10:46:19 | 显示全部楼层
Antoine Chambert-Loir,Johannes Nicaise,Julien SebaIncludes the first complete treatment of geometric motivic integration in a monograph.Covers the construction of arc schemes and Greenberg schemes.Provides a complete discussion of questions concernin
发表于 2025-3-22 15:24:37 | 显示全部楼层
0743-1643 duate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since. .978-1-4939-9315-4978-1-4939-7887-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-22 19:43:40 | 显示全部楼层
发表于 2025-3-23 00:38:33 | 显示全部楼层
0743-1643 chemes.Provides a complete discussion of questions concerninThis monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser an
发表于 2025-3-23 04:00:10 | 显示全部楼层
Book 2018oted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ri
发表于 2025-3-23 06:07:27 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 00:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表